Book Title: Nandanvana
Author(s): N L Jain
Publisher: Parshwanath Vidyapith

Previous | Next

Page 221
________________ Mathematical Expositions of Vīrasena in Dhavalā Commentary : (201) the value of maximal numerable number is sufficiently higher and variable than presented in Dhavalā. Beyond the numerable, comes the innumerable (As), which has eleven varieties vide verse 3.57 p. 123. Out of which, the countable innumerable is important for us. It has three varieties: (1) Peripheral (Parīta), (2) Yoked (Yukta) and (3) Innumerable (i). Each of them has three varieties: (1) Minimal (2) Maximal and (3) Medial. The author has used the medial innumerable innumerate number in his discussions and calculation (Vol.3, p. 127). The value of innumerable number is normally calculated on the basis of pit-based simile measures called Palyopama (P) and Sāgaropama (S) - a unit of 109 P. However, Vīrasena has given another method to express innumerable in which it lies between Minimal As. As (P/As) and Minimal peripheral infinity + (innumerable universe)? Both the terms are incalculable. However, Muni Mahendra?has calculated the minimum value of Palyopama“ (P) as 4.1X1040-31 which could be converted into S-units by multiplying it with 10". The minimal peripheral innumerable = maximal numerable number + 1. Generally, the upper unit is larger by 1 than its adjacent lower unit and the lower unit is lesser by one than its adjacent upper unit. Vīrasena (Dhavalā 3, p.11) has improved the concept of five or ten-fold infinity of Th. (5.217; 10.66) to 11-fold one by adding mode of knowledge to it. It has been eleven-foldly classified as the innumerable. Out of them, the countable infinity (numerical infinity) is of concern to us, which has a large description. It has also the varieties as in the case of innumerable each divided into three classes each. The quantitative description with reference to infinity refers to medial infinite-infinite class. It could be guessed that Minimal peripheral Infinite number = Maximal innumerable innumerable + 1 However, Vīrasena has given the following formula for the value of medial infinite-infinite. Let the minimal infinite-infinite be n, then squared-squaring it three times, we get n adm-11 n+n" → (n") "" + (n")******* If this method is applied in case of the number 2, we get, 22 + 4 + 256236 +617 digit number Jain Education International For Private & Personal Use Only www.jainelibrary.org

Loading...

Page Navigation
1 ... 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592