Book Title: Indian Antiquary Vol 20 Author(s): John Faithfull Fleet, Richard Carnac Temple Publisher: Swati PublicationsPage 67
________________ FEBRUARY, 1891.1 THE BURMESE SYSTEM OF ARITHMETIC. 57 Now the Burman writes the result of a division exactly as we do; thus, 21 3. He has, however, so far as I could ascertain, no notion of using fractions, except that he can by rule of thumb add and, or subtract from , and work simple problems like these. But as to adding to $, multiplying # by t, or dividing Yo by $, or telling how much greater to are than t, these are problems quite beyond his powers. His expressions for fractions reveal his conception of them: thông bông ta bồng, (of) three parts one part, lễ bổng thông bông, (of) four parts three parts. So far as relates to concrete matters, such as money calculations, division of property or land, and so on, the Burmans I found could work out simple calculations in proportion, but abstract questions seemed to puzzle them at once. I regret that I have not so far found any leisure to enquire into their processes. The following pages purport to exhibit by examples the actual arithmetical processes employed by the Burmese by rule of thumb, so far as they can be shewn on paper, PART II. A. ADDITION. Example I. Add 236 to 325. To add 236 to 325, place the sums one under the other; units under anita, tens under tens. and so on : thus, 325. 236 Now commence by adding the first ciphers together in the head ; thus, 2 + 3 = 5: and substitute the sum for the upper cipher of the addition; thus : 525. 36 Now proceed in the same way with the second cipher, because 2 + 3 = 5, thus : 686 Now proceed in the same way with the third cipher, but because 5 +6=11, . e., more than ten, substitute thus : 551. Now, because 5 + 1 = B, add the remainder and substitute thus : 561. Demonstration by the European method is as follows: 325 236 561. In the Barmese method on the sand, parabaik or glate, the processes actually shewn would be as follows:13 - (a) 325, (b) 525, (c) 555, (d) 551, (c) 561. That is, they are 5 in 236 36 6 1 number. There is no check at all by the Burmese method. Example 2. Add 465 to 897. Proceeding as before in the case of the sums of any two ciphers which exceed 10, we get 6 processes, as sbewn by the Burmese method; thús : (a) 897, (6) 1297, (e) 1257, (d) 1857, (6) 1852, () 1362. 465 65 1 Demonstration by European method : 897 465 1362. 1 The Hinda processes are identical, except that the ciphers of the upper sam only are rabbed out in the calculation proceeds. In addition and rubtraction, the Hinda Astrologers commence from unita.-B. B. D.Page Navigation
1 ... 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486