Book Title: Jain Vidya evam Prakrit
Author(s): Gokulchandra Jain
Publisher: Sampurnanand Sanskrut Vishvavidyalaya Varanasi

View full book text
Previous | Next

Page 229
________________ २१२ जैनविद्या एवं प्राकृत : अन्तरशास्त्रीय अध्ययन when basic vectors in terms of the fractional multiples of V as elements, regressive with fractional multiple of basic vectors d as common difference, vector group (or simply vectors was numbers of rows) and tensors s as number of columns starting from extreme right lowest corner represent n various geometric regressions. Similarly, following matrices, have the same number w of rows and the numbers of columns, as above, have i as a notation for indivisible-corrsponding-sections, and represent the imparlation intensities associated with each basic vector of the corresponding elements of the atove matrices according to the position in the rows & columns. The n th geometric regression of the recoil (anubhāga) intensity-- is given by nsi+ (w – 1),..., ((n-1) s+2) i+(w – 1), ((n-1) s+1)i+(w - 1), . nsi +1 ..., ((n-1) s+2) i+1 ((n-1) s+1)i+1 ... (2.15) Lnsi ..., (n-1) s+2)'i ((n -- 1) s+1) i All the above matrices are in correspondence with a particular configurational structure in relation to karmic bonds etc. Further the equation (2.13) may be written as 2 (t) = Az (t) (2.16) or d zy (t) dir ?, (t) 0 0 1 0 0 1 0...O 0...0 Zy (t) 2y-(t) 7 ....(2.17) L2, (t) zi(t) -a, -a, -a,...ay. 2 2 (t) The solution of the above matric differential equation give z (t) = e.it z (0) = 0 (t) z (0) where z (0) is z (t) at t=0, and eft=(t) (2.18) is called tracnition matric which is a y x y square matric by $(t) = .. 0 1 0 0 0 0 0 0 1 0 0.0 ...... (2.19) -a, -a, -22 ..-ay-1 परिसंवाद-४ Jain Education International For Private & Personal Use Only www.jainelibrary.org

Loading...

Page Navigation
1 ... 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354