Book Title: Epigraphia Indica Vol 11
Author(s): E Hultzsch
Publisher: Archaeological Survey of India

Previous | Next

Page 186
________________ No. 16.] NEW SPECIAL TABLES FOR THE COMPUTATION OF HINDU DATES.159 four decimals. (2) To the sum of a (mean distance of Sun and Moon) two corrections (equations) must be applied, while in the General Tables only one equation is needed. The arguments of these equations are the sums of b and c, respectively, and they are to be looked out in the tables of equations under the several siddhantas. In order to calculate the value of the equation for an argument not entered in the table, but lying between two table values, a column headed ▲ 10 has been inserted in the middle of these tables, which gives the increase or decrease of the equation for a difference of ten in the argument. I now proceed to illustrate the working of the new Tables by a few examples. First example.-Let it be proposed to verify the date: Kali-Yuga 4198, Chaitra su. di. 2 ravau, according to the Surya-Siddhanta. We first calculate the date according to the General Tables, and write down the calculation in the proper form (see above, Vol. I. p. 410). 4100 K.Y. 98 years 4198 K.Y. (5) 9.57 15th sol. Chaitra (4) 22.52 41st century 98 years 15th sol. Chaitra (1) 5.58 111 (4) 399 59 4 ghatikās 226 32 palas 30 (2) 2-09 eq. 763=0 256 2.09 Result: On the Monday (2) in question, the third tithi was running; it commerced on the preceding day (Sunday), about 5 ghatikas before mean sunrise. Now in order to calculate the result according to the Surya-Siddhanta, proceed as follows. Look out K. Y. 4100 or 1st century K. Y. in table I, 98 years in table II, and 15th Chaitra in table XIII (which is the same for all Siddhantas) and sum up the quantities in the several columns (rejecting integers); thus w (1) (4) (4) 24 170 593 3 27 763 a 18563 13299 75053 6915 2660 7353 K. Y. 4198, 15 Chaitra (2) Now find the equation for b 2660 from table III, vis. 5, and the equation for c=33 from table IV, viz. 3; then add these equations to a, viz. 6915+5+3=6923. Table XVIII gives 6667-su. di. 2; the difference from a just found, 6923-6667-256; this is according to tables XIV and XV equal to 4 ghatikis (a=226) and 32 palas (a=30). Therefore, according to the Sürya-Siddhanta, the 2nd tithi ended 4 ghatikas 34 palas before mean sunrise. This result is very nearly right, and we may in most cases rest satisfied with it. If the highest degree of accuracy be required we subtract the increase of a b c for 4 ghafikas 2 palas from tables XIV and XV to the result found before; riz. from 6915 22 2 2 Ind. =20:43 Ind. su. di. 2=22:43 b 6157 571 5932 6915 2660 - 256 27 6659 2633 7863 9990 9500 C 7353 2 7351

Loading...

Page Navigation
1 ... 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438