Book Title: Babu Devkumar Smruti Ank
Author(s): A N Upadhye, Others
Publisher: Jain Siddhant Bhavan Aara

View full book text
Previous | Next

Page 391
________________ The faina Antiquary I Vol xvi Puņo nissùikhettain coddasa Now dividing the needle-less rajjuayadam do khandiņi kariya (the cylinder-less) volume which tattha hethimakhandam ghettûna is fourteen units deep into two uddha pâțiya pasaride supo parts, then taking the lower part, pakhettań hoûņa chethadi. (ses figure 1) cutting it from the Tassa muhavittharo ettiyo hodi top (downwards) and spreading in Talavittharo ettiyo hodi it yields a volum: like a win21113. Ettha muhavitthareņa nowing pin: Of this the face chindide do tikonakhettaņi eyam. length is this: . Its base ayadacaurassakhettaṁ ca hoi. length is this: 2111Here cutting it from the face-ends down wards are obtained two triangular volumes and one volume on a rectangular base. (se fig 31 Tattha tava majjhimakhella. Now we find out the volume phalamaniñjada : Edassa usseho of the middle part. It height is spurn units, and its length is this satta rajjúo. Vikkhambho puņa satta ra);40. Vikkhambho puņa in the face the breadth is ettis hoditi. Minammi ega. uni-dimensional (i c. zero), and gasapadesabahallalil, talammi tiņni at the base the thickness is three rajjubahallo tri sattahi raji'hi units So the face length multi plied by seven and (also) by half muhavittharam guniya talata the thickness of the base, the ! halladdheņa guņide majjhim 1k volume of the middle part will hettaphalamettiyam hoi 3233 5. be this: 32928. Sampahi sesadokhettani sat. Now of the remaining two tarajjuavalambayani terasuttara. volumes (tetrahedrons) of height sadeņa egarajjuin khandiya tattha sevea units; the length of the atthetalisakhandabbhahiya nava: arms is forty-eight parts of one rajjubhujani bhujakodipaaogga- hundred thirteen parts of a unit kanņaņi, kaņņabhmiye alihiya an nine units (.e. 9,13 units). dosu vidisasu majjhammi phalide Bases and arms correspond to tingi tiņni khettani honti. hypoteneurs. Taking the hypo teneuses, both of them, and cutting from the middle in both (horizontal and vertical) directions gives rise to three volumes (in cach tetrahedron). (See fight 3)

Loading...

Page Navigation
1 ... 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538