Book Title: Jain Siddhant Bhaskar
Author(s): Jain Siddhant Bhavan
Publisher: Jain Siddhant Bhavan

View full book text
Previous | Next

Page 192
________________ No. II 1 second category; and proceed thus all throughout. When all the elements of the first category are exhausted, begin afresh with the second category; (and so on). When all the elements of these two categories are thus distributed out, the operation with the elements in the third category begins." 1 That is to say, the representation is in k1 V1 V2 V3 V4 i2 k1 MATHEMATICS OF NEMICANDRA. i k2 V1 V2 V3 V4 12 k2 u i1 K3 V1 V2 V3 V4 i k3 V1 V2 V3 V4. V1 V2 V3 V4 V1 V2 V3 V4 similarly with is, is, and is in the upper row. i1 Ks V1 V2 V3 V4 i2 KA V1 V2 V3 V4 Nasta. To find out the elements occurring in a combination whose serial number is known, Nemicandra gives the following rule: "Divide (the given serial number) successively by the. numbers of elements in the different categories, adding each time: The unity to the quotient, except when the remainder is zero. remainder determines the place of an element in its category; the zero remainder indicates the last element."2 This rule is quite general and is equally available in case of all representations. We shall apply it to find, for example, the 13th combination in the Prastara. Dividing 13 by 5, we get the quotient 2 and the remainder 3. So the combination contains the element is. Adding 1 to the quotient 2, we have 3. On dividing 3 by 4, the quotient is 0 and the remainder 3. Hence there is the element k Now 0+1=1 and dividing 1 by 4, we get the quotient 0 and the remainder 1. So there is v1. Hence the 13th combination of the Prastara is içkзv1. Now in the Parivartana: On dividing 13 by 4, the quotient is 3 and the remainder 1. So the combination contains v1. Adding unity to the quotient, we have 3+1=4. Dividing 4 by 4 we get 1 1 Ibid, Gathas 38, 40 2 Ibid, Gathā 41

Loading...

Page Navigation
1 ... 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417