Book Title: Epigraphia Indica Vol 16
Author(s): F W Thomas, H Krishna Sastri
Publisher: Archaeological Survey of India

Previous | Next

Page 148
________________ No. 14.] THE FIRST ARYA-SIDDHANTA: "TRUE" SYSTEM. 113 the values of a, b, c for 181 days to those already found for Chaitra sukla 1, the equations of b and care added from Tables LXVI, LXVII approximately, or from Tables LXVI A, LXVII A in very close and doubtful cases, to the resulting value of a for the day, thus t, the true tithi-index, is found: In this example we work approximately. The serial number of the day Chaitra sukla 1 (in March A.D. 1226) is 60 and the weekday 1, Sunday (Example 3). The a, b, c for mean sunrise have been settled in Example 3. d. w.-d. a. b. c. Table LXI, cols. 19-25 . (60) (1) 36 2 15 211 (Table LXIV). . . . (181) (6) 1292569496 (241) (0) 1328 784 707 At mean sunrise on day (Table LXVI) Eqn. 6" (Table LXVII) "Eqn.c" . . 117 At mean sunrise on day 241, t=1448=(Table LXVIII) Sukla 5. Day 241 was (Table LXIX) August 29. Week-day 0=Saturday. Reference to Table LXXI confirms this as the right week-day. The given Hindu date then is so far correct. The 5th śukla tithi of Bhadrapada ended on, and gave its name to, Sat., 29 Aug., A.D. 1226. For historical purposes it is seldom necessary, unless the karana is mentioned, to find the time of beginning and ending of the tithi; but, if required, this is obtained approximately from Tables LXVIII, col. 3, and LXIX. At mean gunrise the tithi-index was 1448. It began (1448-1333 =) 115, or (Table LXX) gh gm before, and ended (1667-1448 =) 219, or 156 31m after mean sunrise on that Saturday. The tithi. Exact work. Example 5. Working the same date with the full decimals, we have d. w.-d. a. b. A8 in Example 3. (60) (1) 35.5215 214-8206 211-3001 Table LXIV. . . (181) (6) 1292-3692 5687639 495-5392 (241) (0) 1327-8907 783.6045 706-8393 For either equation b or equation c mute the difference between the values of b or c thus found and the nearest value respectively in Table LXVI A or LXVII A, cole. 2u, 26. Multiply this difference by the group-difference (col. 4). Divide the result roughly by 2 or exactly by 2.083; and add or subtract the result to or from the standard equation-value given in the Table (col. 3) as necessity demands. [This is the complete process; but it almost always suffices to arrive very near to the truth merely by the exercise of common sense, using Tables LXVI A, LXVII A as Eye-Tables.] Here the moon's anom. b is 783.6045, and the nearest amount of Argument b in Table LXVI A is 783-3, whose exact equation is 3.1006 (col. 3). As the difference in anom. is only about 0-3, viz. 0 2712, and the group-difference only 0-4150, we may take 3.1006 as the required equation of the given anom. Or we may work roughly by a multiplication of the first two decimals of the anom. diff. (0-27) by those of the group-diff. (0-42) and a division of the result by 2-yielding 0.0567, which, added to 3-1006, makes "equation 6"-=3-1573; or we may work completely with all four decimals, arriving at the absolutely correct result 3.1546.

Loading...

Page Navigation
1 ... 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474