________________
v/2"-1-(2w(s-1)-1)d/2"-1
v/2"-1-w(s-1)d/2"-1
v/2" 1
We give an example from Todarmal Artha Samdrsti page 231 (c), where v = 6300, w = 8 and s = 1.
No. of Geometric
Regression
7654321
No. of Instant
8
We consider the n geometric regression matrix i.e., n = 6.
The matrix is expressed as
76
Total
Explanation
6th
Jain Education International
9
10
11
12
13
14
15
16
100
v/2"-1-(w-1)d/2"-1
5th
18
144
20
160
22
176
24
192
26
208
28
224
30
240
32
256
200
1600
The sum of all the entries of the matrix comes out to be 6300.
V 2"-1
4th
6300 26-1
98838508
36
■ Total karma paramanus of the last column
6300
63
44
52
56
60
64
400
3rd
5 geometric regression : 200. 4th geometric regression
: 400.
72
80
88
96
104
112
120
128
800
For Private & Personal Use Only
2nd
= 100.
1st
Therefore the number of karma paramanus in last i.e., 6 geometric regression will be 100.
288
320
352
384
416
448
480
512
3200
Double this value and repeat the process to achieve the number of karma paramanus in 5, 4 and other geometric regressions.
Hence the total karma paramanus in
Arhat Vacana, 14(2-3), 2002
www.jainelibrary.org