Book Title: Arhat Vachan 2002 04
Author(s): Anupam Jain
Publisher: Kundkund Gyanpith Indore

View full book text
Previous | Next

Page 78
________________ v/2"-1-(2w(s-1)-1)d/2"-1 v/2"-1-w(s-1)d/2"-1 v/2" 1 We give an example from Todarmal Artha Samdrsti page 231 (c), where v = 6300, w = 8 and s = 1. No. of Geometric Regression 7654321 No. of Instant 8 We consider the n geometric regression matrix i.e., n = 6. The matrix is expressed as 76 Total Explanation 6th Jain Education International 9 10 11 12 13 14 15 16 100 v/2"-1-(w-1)d/2"-1 5th 18 144 20 160 22 176 24 192 26 208 28 224 30 240 32 256 200 1600 The sum of all the entries of the matrix comes out to be 6300. V 2"-1 4th 6300 26-1 98838508 36 ■ Total karma paramanus of the last column 6300 63 44 52 56 60 64 400 3rd 5 geometric regression : 200. 4th geometric regression : 400. 72 80 88 96 104 112 120 128 800 For Private & Personal Use Only 2nd = 100. 1st Therefore the number of karma paramanus in last i.e., 6 geometric regression will be 100. 288 320 352 384 416 448 480 512 3200 Double this value and repeat the process to achieve the number of karma paramanus in 5, 4 and other geometric regressions. Hence the total karma paramanus in Arhat Vacana, 14(2-3), 2002 www.jainelibrary.org

Loading...

Page Navigation
1 ... 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148