Book Title: Ganittilakam Savrtuttikam Author(s): Hiralal R Kapadia Publisher: Oriental Research Institute VadodraPage 44
________________ INTRODUCTION XLIII (1) C (gross) = 32 (2) C (subtle or neat) = V10d? (3) A = Cal 4) 9= is where r is the radius of a circle equiva. lent to a square of side s; thus r= ( 19 ) 5) co= 4h (d-h) (6) a = 6h+c (7) decembrie (8) A (gross) = V10. c. 1 (9) A (neat) = 1 (0+h) ) c2 + (27) 4h (11) h = Va_ (12) h = 1 (c-Vd2-(*) (13) d= (-h) (14) ) = V8+}a-d (15) ao = 4h (+) (16) c = a -6h Out of these formulæ, the ist three are given in gāthao 311, the 4th in 18, the 5th and the 6th in 760, the 7th in 761, the 8th and the oth in 762, the roth and the 11th in 763, the 12th in 764, the 13th and the 14th in 765, and the 15th and the 16th in 766. In Trilokasāra (gāthā 309) we find the discussion about the breadth of an annulus (valayavyāsa) and the diameter of its edge (sūcīvyāsa). Gommațasāra supplies us with formulæ about volumes of a prism etc. For instance, from gāthā 17 we learn that the volume of a prism = base x height. The gāthā 19 furnishes us with two formulæ as under: (i) Volume of a cone or a pyramid = } base x height. (ii) Volume of a sphere = $ (radius )3 Gāthās 22 and 23 lead us to the following conclusions: Volume of a conical shape=(Circumference )* x height. This is on the supposition that the height equals (approximately) i circumference. The găthā 114 deals with an isosceles trapezium. Jain Education International For Private & Personal Use Only www.jainelibrary.orgPage Navigation
1 ... 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214