Page #1
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
For Private and Personal Use Only
Acharya Shri Kailassagarsuri Gyanmandir
Page #2
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
बीजगणित।
पूर्वार्ध
बहुत उदाहरणों से युक्त बनारस के राजकीय संस्कृत पाठशाला में गणित और ज्योति:शास्त्र के
अध्यापक श्रीबापूदेव शास्त्री ने बनाया ।
दूसरी बार छापा
अध्यापक
ELEMENTS OF ALGEBRA.
FIRST PART WITH NUMEROUS EXAMPLES,
BY
PANDITA BAPU DEVA SA'STRI,
PROTESBOR OT MATHEMATICA AND ASTRONOMY IN TRT SANSKRIT COLLEGE, BENARE
BONORARY MEMBER OT THE ROYAL ASIATIC BOCIETY OF GREAT BRITAIN AND IRELAND, HONORARY MEMBER OF THE ASIATIC SOCIETY OF
BENGAL AND FELLOW OF TAX CALCUTTA UNIVERSITY.
SECOND EDITION:
BENARES
PRINTED AT THE MEDICAL HALL PRESS.
For Private and Personal Use Only
Page #3
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
cosesososos encoreenenessen
PRINTED BY #. J. LAZARUS & Co., AT THE MEDICAL BALL PREA, BENARES. ecoccocoe cocoeecocosebelah
For Private and Personal Use Only
Page #4
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
TRANSLATION OF THE PREFACE.
The science of computation comprehends three branches:
1st. That which treats of numbers.--As the result at which we arrive in each case by the employment of numbers does not in general apply to other cases in which the numbers employed are different, this branch (viz. Arithmetic) is called in Hindi VYAKTA-GANITA, i. e. the computation of particulars. This department of mathematics was originally cultivated in India, whence it spread into other countries. This proposition is strongly supported by the circumstance that the Europeans acknowledge that they owe their knowledge of figures to the Arabs, by whom the science is called The Indian.'
2d.--That which treats of lines.-lu this branch of inquiry our investigations and conclusions are general; but it does not answer all the purposes of computation. The fundamental principles of this branch were at a very early date known in India, whence a knowledge of this science spread into Egypt and other countries. For a minute detail of the circumstances conuected with this, the reader is referred to the preface to my KSHETTRAMITI (a treatise on Geometry in Sanskrit).
This department of Mathematics was termed REKHÁ-GANIT by Pandita Jagannatha of the court of Jayasinha, but I prefer the term KSHETTRA-MITI.
3d.--That which treats of the relations of abstract quantities by means of letters and symbols. As the letters do not, like numbers, disappear when any operation is performed on them, and the result therefore must hold good whatever numbers are substi tuted for the letters the results arrived at by this method of
For Private and Personal Use Only
Page #5
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
( 2 )
computation are general. Hence it is called the computation of genera (TATTVA), or the root (MÚLA) of Arithmetic, or the computation of what are not merely particulars (AVYAKTA).
Regarding the invention of this science, viz. Algebra, I am disposed to think that it was orignally cultivated in India, whence it spread into other countries, as examples of Algebraical computation are to be found even in such ancient treatises as the SURYA-SIDDHANTA.
There is for instance in the SURYA-SIDDHANTA a rule, (which we give in a note),* deducible only by Algebraical computation,
Acharya Shri Kailassagarsuri Gyanmandir
* Subtract the square of the sine of the amplitude from the half of the square of the radious. Multiply the remainder by 144. Divide the product by the half of the square of the gnomon (that is, by 72) added to the square of the equinoctial shadow i. e. the midday-shadow of the gnomon when the sun is in the equinoctial points. Let the name of the result arrived at by this process of calculation be KARANI. Let the calculator write down this number for future reference. Then having multiplied twelve times the equinoctial shadow by the sine of the amplitude, let him divide it. by the former divisor (i. e. by 72 added to the square of the equinoctial shadow). Let the result be called PHALA.
Let the PHALA be subtracted from, or added to, the square root of the KARANI increased by the square of the PHALA, according as the sun is south or north of the equinoctial. The result is called KONA-SANKU-i. e. "The sign of the altitude of the sun when situated in the vertical circle, of which the azimuth distance is 45." If the sun be south of the calculator, then the KONA SANKU will be south-east or southwest, but if it be north of him, then it will be north-east or north-west.
ck
66
Dem. Let x represent the KONA-BANKU.
66
64
P
PALABHA (i. e. the equinoctial shadow). Let a represent AGRA (i. e. the sine of the amplitude).
KARANI.
"k 66 " f Then 12 px:
PHALA.
12x
Now, since the result of adding the AGRA to, or subtracting it from, the SANEU TALA, according as the sun is south or north of the equator. is called BHUJA (i. e. the sine of the difference between the sun's place and the prime vertical),
xα = BHUJA.
SAKUNTALA,
:: 12
but when the sun is N. E., N. W., S. E., or S. W., it is equidistant from the prime vertical circle and meridian. Therefore the hypotenuse of a right-angled triangle, of which one side is the BHUJA and the other equal to it, is the sine of the zenith dis.
tauce.
For Private and Personal Use Only
Page #6
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
for determining the sine of the altitude of the sun when situated in the vertical circle of which the Azimuth distance is 45. But all the original treatises on Algebra bave perished, and of those compiled since the time of ARYA BHAȚA that of BHASKARACHÁRYA only is in use : the others are rarely to be met with:
The first treatise on Algebra published in Greece was that prepared about 1500 years ago by an ingenious Greek named Diophantus.
The Arabs and Persians have never been the inventors of any science. They have always borrowed from other nations. Algebra therefore could not have been a science of their invention
: bsp. ):= 2 (**+a)=
* +2 a3
Now, since the square of the sine of the zenith distance added to the square of the sine of the altitude is equal to the muare of the radius.
.:.x2 + + y2 + 2 a? = R$
Clearing fractions, 72 22 + på 24 apr + 144 a? = 72 R? or
(p2 + 72) 9 + 24 apx - 72 R? - 144 ao 22+ 24 ap 72 R2-144 4?_144 ( RP-a!) .** +p+72* p? +72 - pi + 72 Now, in the foregoing equation it will be observed, that the voice of the side containing the knowo quantities is wbat has been already spoken of under the naine of KARANÍ, and that the half of the co-efficient of 2 i9 wbat has been already spoker. of uuder tha name of PHALA.
Completing the square
2 fx +
+ Extracting the square root +1 / 2+k
x=vf+Ff (A) From this it is evident thnt PHALA is subtractod from, or added to, the square root of the EaraŅI increased by the syaure of the PHALI according as the sun is south or north of the equinoctial.
in (A), if ft be assumed a negative, then the value of x (i. e. of the KOMASAXKU) will also be negative, (i. e. the sun will be below the horizon).
As the foregoing calculation is effcoted by a method of procedure clearly Alge. braical, it follows that the Hindus were in possession of that science at the date of the earliest of their mathenatical treatises,
For Private and Personal Use Only
Page #7
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
Now we cannot say that they burrowed from the Greeks, since the mathematical works of the Arabs are essentially different from those of Diophantus. Hence there cau be little doubt that they derived their Algebra, as well as Arithmetic, from the Hindús. This science was in course of time introduced by the Arabs into Europe, and thence spread into other quarters of the globe.
The first European treatise on Algebra was that of the Italian Lucas de Burgo A. D. 1478. The science was next cultivated in Germany, and Stifel introduced the symbols +,--, and in the year 1544. In 1557, Robert Records introduced the science into Eng. land. Spreading over the whole of Europe, it has now reachod a very high degrec at peraction.
There are a gran variety of problms admitting of 30 easy 50lution by the aid of European Algebra, which cannot be solved by the Hindú method. Mr. D. F. M'Leod (then Magistrate of Benares and afterwards Lieutenant Governor of the Punjab) therefore desired me to prepare a treatise on European Algebra in the Hindi Janguage. Although to write properly on such a subject requires a very intelligent person, seeing that Bhaskaráchárya declares the science to be nothing cise than “reason exortod,” yet, however incompetent for the task, being anxious to meet the wishes of this gentlenian, I ventured upon the undertaking. When the first part of this work was completed, it was lithographed at Bombay in the year 1850 by order of Government, N. W. P. The first purt is out of print and the second part is really for the press. As many people are now very anxious to get the whole work i. e, the first and second parts printed, Nr. Kempson the director of Public Instruction, N. W. P. has encouraged me to publish it.
The work is compiled from various European and Native anthors, and SLOKAS of BILASKARÁCHÁRYA are occasionally quoted.
The first part, which contains 5 chapters, has now been considerably improved and many examples have been added to it.
For Private and Personal Use Only
Page #8
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
Chapter I. Definition of terms.
Chapter II. Simple Rules including Involution, Evolution, Properties of prime quantities, &c.
Chapter III. The Greatest Common Measure and Least Common Multiple.
Chapter IV. Algebraic Fractions, Determination of the real values of : and , Circulating decimal periods &c.
Chapter V. Nature and Classifications of Equations, Simple Equations involving one unknown quantity, Simple Equations of two or more unknown quantities, Problems producing simple Equations and Single and Double Position. BENARES SANSKRIT COLLEGE:)
BAPU DEVA SASTRI. The 18th February, 1874.
For Private and Personal Use Only
Page #9
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
For Private and Personal Use Only
Acharya Shri Kailassagarsuri Gyanmandir
Page #10
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
॥ श्री: ॥ भमिका ।
गणित तीन प्रकार का है । उस में १। जो एक, दो इत्यादि संख्याओं से बनता है वह एक गणित है। इम में मो गणनाप्रकार एकत्र उपपत्र हो सो प्रायः अन्यत्र उपपव नहीं होता इसलिये यह विशेष गणित कहलावे और इसी लिये इस की व्यक्त गणित अर्थात स्पष्ट गणित संजा है । यह पहिले भारतवर्ष में उत्पन्न हुआ और फिर यहां से सब पृथ्वी में फैल गया क्योंकि यह अत्यन्त प्रसिद्ध है कि यह गणित युरोपीयन लोगों ने प्रारबों से लिया और पारख लोगों ने भारतवर्ष से लिया क्योंकि वे इस को हिसाबे हिन्द कहते हैं।
२। जो गणित रेखायों से बनता है यह दूसरा । इस से जो गण. नाप्रकार एकत्र उपपत्र हो यह सर्वत्र उपपत्र होता है परन्तु इससे गणितमात्र का निर्वाह नहीं है। इस गणित की सत्यबाते अतिप्राचीन काल से भारतवर्ष में प्रसिद्ध हैं उस में किसी को संशय नहीं, परन्तु यह मित्रादि देशो में बहुत फैल गया। इस का सविस्तर वृत्तांत महत क्षेत्रमिति यन्य की भूमिका में देख लेओ। इस प्रकार का नाम जयसिंह राजा के जगनाथ नामक पण्डित ने रेखागणित रखा है परन्तु हम ने रस का नाम क्षेत्रमिति रखा है।
३। जो गणित संख्याओं के स्थान में असर रखके उन से बनाते हैं वह तीसरा । इस में एकत्र जो गणितप्रकार उपपव हो उस का व्यभिचार अन्यत्र कहीं नहीं होता क्योंकि नो अतर किसी एक संख्या का द्योतक हो तो वह संख्याओं के ऐसा दूसरे अक्षर में लुप्त नहीं हो जाता
For Private and Personal Use Only
Page #11
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
भूमिका
इसलिये इस में फल में जो एक २ अक्षर के स्थान में कोर संख्या रखा तो वह फल कभी अशुद्ध नहीं होता अतएव यह सामान्य गणित कहलावे । और इसी लिये इस को बाज अर्थात् तत्त्व वा मूल और अव्यक्त कहते हैं । अब यह गणित पृथ्वीपर पहिले किस देश में उत्पन्न हुआ इस का विचार करते हैं ।
1
*
मेरे विचार में यह आता है कि यह गणित पहिले हिन्दुस्थान में उत्पन्न हुआ फिर यहां से सर्वत्र फैला है। इस का कारण यह है कि सूर्यसिद्धान्तादिक जो अति प्राचीन ग्रन्थ हैं इन सभों में इस गणित से उपपच हुए प्रकार मिलते हैं। जेसा सूर्यसिद्धान्त में कोयशङ्क का आनयन जो* टिप्पणी में लिखा है इस की उपपत्ति बीजगणित के
Acharya Shri Kailassagarsuri Gyanmandir
त्रिज्यावर्धितोऽयज्यावी नाद्वादशाहतात् । पुनर्द्वदिश निघ्राच्च लभ्यते यत् फलं बुधैः ॥ शङ्कुवर्गार्धसंयुक्तविषुत्रद्वर्गभाजितात् । तदेव करणी नाम तां पृथक् स्थापयेदुधः ॥ श्री विषुवच्छायाग्रन्यथा गुणिता तथा । भक्ता फलाख्यं तद्वर्गसंयुक्तकरण पदम् ॥ फलेन हीनसंयुक्तं दक्षिणोत्तरगोलयोः । याम्ययोर्विदिशाः शङ्कुरेवं याम्योत्तरे रवी ॥ परिश्रमति शङ्कास्तु शङ्कुरुत्तरयोस्तु सः ॥
इस का अर्थ । त्रिज्या के वर्ग के आधे में अया का वर्ग घटा के शेष को १२ से गुण के फिर उस को १५ से गुणदेश्रो और इस में शङ्खवर्ग के आधे अर्थात् ७२ से ि जो भाव उस का भाग देश इससे जो भजनफल गणक लोग पायेंगे उस का नाम करणी होवे उस करणो को गणक अलग लिख रखे फिर १२ गुनी पलभा के असे गुण के उस में साहि भाग देश्रो अर्थात् ७२ से सहित को पलभावर्ग उस का भाग देखो जो लब्ध होगा उस का नाम फल होवे । अब इस फल के वर्ग से सहित जो करणी उस का वर्गमूल उस फल से रहित वा सहित करो जब सूर्य दक्षिणा का उत्तर गोल में होवे अर्थात् जो सूर्य दक्षिण गोल में होवे तो करणी के वर्गमूल में फल घटा देश्रो और जो उत्तर गोल में होवे तो फल जोड़ देश्रो साशङ्कु होता है। यह शङ्क जिस स्थान के लिये शङ्क सिद्ध करते हो उस की दक्षिण की और सूर्य भ्रमण करता हो तो श्री और नैर्ऋती दिशाओं में बनता है और जो उत्तर की ओर सूर्य भ्रमण करता हो तो, ईशानी और बायत्री दिशाओं में बनता है
इस को उपपत्ति यह है ।
यहां मानो य = -कोणशङ्क । तब १२: पलभा : यः
प १२
For Private and Personal Use Only
य
शङ्कुलल
।
Page #12
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
भूमिका ।
बिना नहीं हो सकती इसलिये इन अतिप्राचीन ग्रन्थों के भी पहिले से बीजगणित यहां प्रसिद्ध है यह सिद्ध होता है । परन्तु बीजगणि के आ यन्य सब नष्ट हुए सांप्रत आर्यभट के काल से इधर जो बीज
अब जो दक्षिण गोल में सूर्य हो तो शङ्कुतल में प्रया जोड़ देने से और जो उत्तर गोल में हो तो घटादेने से भुज बनता है :. प य + अ = भुज ।
१२
परंतु जब कोण में सूर्य रहता है तब उस को जितना अन्तर सममण्डल से रहता है उतनाहि याम्योत्तर वृत्त से रहता है इसलिये तब दृग्ज्या अर्थात् नतांशों की ध्या क होती है और भुज और कोटी ये दोनों भुज के समान होते हैं ।
२
3
दृग्ज्या = २
२
प
... य + .... ७२
२ अप
२
+ य+३श्र 1
७२
३
अब शङ्कुबर्ग ओर कृग्ज्यावर्ग इन का योग त्रिज्यावर्ग के समान होता है ।
२
अप
२
प
य
२
... य +
१२
www.kobatirth.org
• य े प्र
3
छेदगमसे, ७२६ + खा, ( प + ७२)
२
य +२ अ त्रि
२२
पय े + २४ अप + १४४ श्र
२
२
= ७२ त्रि
य =
२४ श्रपय
७
Acharya Shri Kailassagarsuri Gyanmandir
२ १४४ प्र
२४ श्रप
२ + ७२
२ + ७५
प२ + ७२
इस से स्पष्ट प्रकाशित होता है कि इस में जो व्यक्त पक्ष है उस की करणी संज्ञा किई है और य के वारयोतक के आधे की फलसंज्ञा किई है ।
.. य े + २ फय = क
२
वर्गपूर्ति से, य े + २ फय + फ मूल लेने से, य° फ = Vफर + क
२
= फ + क
= ७२ त्रि
१४४ श्र
१४४ (त्रि
- श्र े)
For Private and Personal Use Only
-
य - 1 फर + ऋ + फ
इस से फल के वर्ग से सहित जो करणी उस का वर्गमूल उस फल से रहित वा महित करो जब सूर्य दक्षिण वा उत्तर गोल में होये यह स्पष्ट प्रकाशित होता है इस में जो (फर + क यह व्यक्तपक्ष का मूल ऋण मानो तो दोनों गोल में शङ्कमानं ऋण होगा अर्थात् तब सूर्य क्षितिज के नीचे कोणवृत्त में प्रवेगा ।
यह ऊपर का गणित केवल बीजही से बनता है इस से स्पष्ट है कि इन प्रतिप्राचीन सिद्धान्तों के भी पहिने मे बीजगणित का प्रचार यहां था ।
Page #13
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भूमिका
बने हैं उन में एक श्रीभास्कराचार्य का बीजगणित प्रसिद्ध है और स are मिलते हैं
1
अनुमान १५०० बरस पहिले ग्रीस देश में एक डायाफण्टस नामै बिद्वान् हुवा उस ने वहां बीज का बन्य पहिले बनाया ।
चारब वा फारस के लोगों से कोद्र विद्या कभी उत्पन्न नहीं हुई इन्हों ने सब विमानों का संग्रह दूधर उधर से किया तब बीजगणित अवश्य इन्हें ने दूसरे से लिया है इस में संशय नहीं सोभी ग्रीक लोगों से न लिया होगा क्योंकि डायाफण्टस का बीज और चारबों का बीज दून में बड़ा बीच है इसलिये उन्होंने वह बीक लोगों से नहीं लिया यही सिद्ध होता है । तब आवश्य वे जैसा व्यक्तगणित हिन्दुस्थान से ले गये वैसा बीजगणित भी यहां से ले गये होंगे यह सम्भाव्य है । फिर आरब से युरोप में गया । यो समय पृथ्वी में बीजगणित हिन्दुस्थान से गया है ।
ये
युरोप में बीजगणित का ग्रन्थ पहिले ईसवी सन् १४७८ में लुकास star नामक एक विद्वान इटली देश में ले गया फिर वहां से जर्मनी देश में गया वहां सन् १५४४ में स्त्रिफेल नामक एक विद्वान ने धन, ऋण और मूल दून को योतित करने के लिये क्रम से +, चिह्न ठहराए । फिर थोड़ेही काल से सन् १५५० में राबर्ट रिकार्ड ने इग्लंड में इस विद्या का प्रचार किया यों युरोप में यह विका फेरा गई। वह अब वहां परमावधि के निकट पहुंची है संप्रति युरोपियन रोति से जो २ बीज के विषय सिद्ध होते हैं वे हमारे भारतवर्षीय बोलों से किसी प्रकार से साध्य नहीं हैं इस कारण वे बोज के प्रकार इस देश में प्रसिद्ध होने के लिये पहिले श्रीयुत डी. एफ्. मेक्लोड़ साहिब ने (जो फिर पंजाब के गवर्नर हुए थे) मुझ को यह ग्रन्थ हिन्दी में बनाने की आज्ञा दिई । फिर यद्यपि बीज का ग्रन्थ करना यह अतिशय सूक्ष्म बुद्धि जिस की होगी उसी का काम है क्योंकि यह केवल बुद्धि का व्यापार है ( यों भास्करा
For Private and Personal Use Only
Page #14
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भूमिका ।
चार्य ने भी अपने ग्रन्थ में लिखा है) तथापि मैं अल्पबुद्धि केवल उस पूर्वोक्त महाशय की इच्छा पूरी करने के लिये उस की आज्ञा के अनुसार इस यन्य के बनाने में प्रवृत्त हुआ । और जब इस ग्रन्थ का पूर्वार्ध बन गया तब वह पश्चिमोत्तर देशाध्यक्ष श्रीगवर्नर साहिब की श्राजा से सन् १८५० में बंबई में छापा गया। फिर पहिली बार पीहुई पूर्वार्ध की प्रति सब उठ गई, और इस ग्रन्थ का उत्तरार्ध भी हमारा बनाया हुआ छापने के लिये सिद्ध हुआ । और जब बहुत लोगों को इस समय ग्रन्थ के छपजाने की बड़ी उत्कण्ठा हुई तब पश्चिमोत्तर देश को सब शालाओ के डैरेकर श्री केमसन् साहिब ने इस समय ग्रन्थ के छप जाने में मुझ को बड़ा प्रोत्साहन और साहाय्य किया ।
यह यन्य अनेक अंग्रेजी के और इस देश के बीजगणितों को देख के बनाया है इस में प्रसंग से श्रीभास्कराचार्य के श्लोक भी कहीं २ लिखे हैं । इस का पूर्वार्ध जो पहिली बार छपा था उस से सांप्रत के पूर्वार्ध में बहुत विशेष हैं और अभ्यास के लिये उदाहरण भी पहिले बहुत अधिक दूस में लिखे हैं ।
से
इस पूर्वार्ध में ५ अध्याय हैं ।
१ ले अध्याय में परिभाषा, और उस का अच्छी भांति बोध होने के लिये कुछ उत्थापन के उदाहरण और प्रत्यक्ष बातें इतने विषय हैं ।
२ रे में संकलन, व्यवकलन इत्यादि ६ परिकर्म और अन्त में प्रकीर्णक अर्थात् अग्रिम विषयों के उपयोगी कुछ फुटकर विषय लिखे हैं । इस प्रकीर्णक में पहिले समान वा विषम् दो पक्षों का समशोधन वा पक्षान्तरनयन, संक्रमण, बीजात्मक अदृढ राशि के गुण्यगुणकरूप वयवों का ज्ञान होने के लिये कुछ उपयोगी युक्ति और परस्पर जा दो राशि दृढ़ हैं उन के गुण इतने विषय कहे हैं ।
For Private and Personal Use Only
Page #15
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भूमिका । ३रे में बीजात्मक पदों का महसमापवर्तन और लघुतमापवयं जानने के प्रकार हैं।
४ थे में बीजात्मक, भिन्नपद, उन के भेद, उन के संकलनादिक ६ परिकर्म और प्रकीर्णक इतने विषय कहे हैं। इस प्रकीर्णक में छेदगम, विषमपक्षों का गणित, ऋणात्मक और भिन्त्रात्मक घातमापक, • और 0 दन के गुण और और इन राशिओं का वास्तव मान जानने की रीति, और अन्त में दशमलव भिवराशिओं का गणित है।
५ वे में समीकरण, उस के भेद, एकवर्ण एकघातसमीकरण, अनेक. वर्ण एकघातसमीकरण, एकघातसमीकरणसंबन्धि प्रश्न, और अन्त में दृष्टकर्म और द्वीष्टकर्म है।
For Private and Personal Use Only
Page #16
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
परिभाषा
संकलन
व्यवकलन
कोष्ठ
गुमान
भागहार
घातक्रिया
मूलक्रिया प्रकीर्णक
...
329
***
300
***
D
म समापवर्तन लघुतमापवर्त्य
**
649
110
100
...
140
100
146
गुणन
भागहार
घातक्रिया
मलक्रिया
freiबन्धिप्रकीर्णक
...
॥ अनुक्रमणिका ॥
...
बीजात्मकभित्र पदों का व्युत्पादन fraपदों का रुपभेद
संकलन और व्यवकलन
...
***
174
www.kobatirth.org
...
co
अध्याय १
***
अध्याय
::
00000
...
::
:::
अध्याय ३
111
...
अध्याय ४
४
FDM
142
::
:::::
:::::
:..
:
Acharya Shri Kailassagarsuri Gyanmandir
DD.
(es
For Private and Personal Use Only
::
::
::
::
:::
:::
:::::
:::
:
: :
⠀⠀
...
443
⠀
:
:
..
:::
190
***
SAS
::
***
:::
***
:::
...
200
...
...
406
...
***
0.0
...
21
Y
-
११
१७
२०
६७
३५
४६
५२
६२
પ
१०३
११७
११८
१२७
१३९
१४४
१५३
१५०
१६२
Page #17
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
समीकरण का व्युत्पादन एक एकघात समीकरण अनेकवर्णएकघात समीकरण एकघात समीकरण संबन्धि प्रश्न दुष्कर्म और दुष्टकर्म
***
**0
***
10
isg
अध्याय ५
000
:
:
Acharya Shri Kailassagarsuri Gyanmandir
:
::
::
⠀⠀
⠀⠀
For Private and Personal Use Only
:
E
...
130
***
१८९
१९१
२१५
२३५
३७०
Page #18
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
नत्वेभास्यं वक्ष्ये युरोपियनरीतितो बीजमें म्फटया हिन्द्याख्यगिरा बापूदेवाभिधानोऽहम् ॥ ५ ॥
बीजगणित
अध्याय १ ।
प्रक्रम । अ, क, ग, इत्यादि अतरों को संख्याओं के घातक अर्थात् दिखलाने हार मान के उन्हीं अक्षरों से जो गणित करते हैं उस को बीजगणित कहते हैं। यह प्रायः सब गणितों का उपयोगी है।
यहां जो नो संख्या व्यक्त अर्थात् जानी हुई हैं उन के योतक अ, क, ग, इत्यादि वर्णमाला के पहिले अतर मानलिये हैं। और जो संख्या अव्यक्त अर्थात् अज्ञात हैं उन के द्योतक य, र, ल, इत्यादि वर्णमाला के अन्त के अतर मानलिये हैं। और बिन संख्याओं के व्यक्तत्व का वा अव्यक्तत्व का निश्चय नहीं है उनके दोतक त, थ, द, इत्यादि मध्यम वर्ण माननिये हैं। और इन सब वर्णी के संकलन, व्यवकलन इत्यादि परिकों को कितने एक+,-.x, इत्यादि विहां से दिखलाते हैं।
परिभाषा ।
२। + यह निह संकलन का योतक, इस को धन चिह्न कहते हैं। यह चिह्न निस पद के अर्थात किसी संव्या के दिखनाने हारे बीजा. स्मक चिह्न के पहिने रहता है सो दिखनाता है कि उस केवल पद की संख्या जोड़ी हुई है उस को धन पर कहते हैं। और इसीलिये कोर दो पदों के बीच में वा बहुत पद हार्वे तो पास २ के दो २ पदों के बीच में + इस चित्र को लिखने में जो बनता है वह दिखलाता है कि उन सब
For Private and Personal Use Only
Page #19
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
परिभाषा |
पदों की संख्या मिलके इकट्ठां किई हुई है । जैसा । अ + क यह दिख लाता है कि की संख्या में क की संख्या मिलाई है । और अ + क + ग यह अ, क और ग इन की संख्याओं के योग को दिखलाता है ।
--
३
1 यह चिह्न व्यवकलन का द्योतक, इस को ऋण चिह्न कहते हैं । यह चिह्न जिस पद के आदि में रहता है सो दिखलाता है कि उस केवल पद की संख्या घटाई है । और उस को ऋण पद कहते हैं । क यह दिखलाता है कि की संख्या में क की संख्या
जैसा । अ
घटाई है ।
-
Acharya Shri Kailassagarsuri Gyanmandir
--
-घ, (अ + क) + (ग
४ । + + ग घ), {अ + क } + ग घ, वा, [अ + क] + [ग घ] ये सब चारों प्रत्येक दिखलाते हैं कि अ + ककी संख्या में ग घ की संख्या जोड़ दिई है। और+क
ग घ, (+क) – (ग + घ) इत्यादि प्रत्येक दिखलाते हैं कि अ + क की संख्या में ग ध, की संख्या घटा दिई है। इस चिह्न को हल और ( ), { } और [ ] इन को कोष्ठ कहते हैं । ये सब प्रत्येक दिखलाते हैं कि अपने अन्तर्गत जो पद हैं वे मिलके एक पद है ।
-G
एक हि अर्थ दिखलाने के लिये एक हुल और तीन कोष्ठ ये चार चिह्न कल्पना करने का प्रयोजन यह है कि जब एक कोष्ठ का काम हो तब तो प्राय: ( ) यही कोष्ठ लिखते हैं और एक के बाहर एक ऐसे अनेक कोष्ठ करने का काम पड़े तब जो एक हि प्रकार का कोष्ठ का चिह्न हो तो कौन कोष्ठ कहां तक है इस का तुरंत बोध न होगा और विजातीय कोष्ट हों तो इस में व्यामोह न होगा ।
For Private and Personal Use Only
जैसा । च - [घ - {ग - ( + क) ) ] यह दिखलाता है कि अ + क की संख्या को ग की संख्या में घटा के शेष को फिर घ की संख्या में घट के इस शेष को न की संख्या में घटा देखो । जो एक हि प्रकार का कोष्ठ का चिह्न हो तो इस अर्थ की शीघ्र उपस्थिति न होगी । इस लिये अनेक प्रकार के कोष्ठ के चिह्न कल्पना किये हैं ।
Page #20
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
Aw
परिभाषा । ५। ४ यह वा • यह चिह्न गुणन का योतक है। जैसा, 4xक वा अक यह अ और क इन के गुणनफल को दिखलाता है। इसी भांति अXX ग, वा, अकाग यह अ, क और ग इन के गुणनफल को दिखलाता है । यहां अ, क और ग इन को गुण्यगुणकरूप अवयव कहते हैं । परंतु जो गुण्यगुणकरूप अवयव केवल बीजात्मक पद हो तो उन के गुणनफल में लाघव के लिये प्रायः गुणनचिह्न नहीं लिखते, । जैसा। अ, क और ग इन के गुणनफल को प्रायः अकग, यों लिखते हैं और ३, य और र इन के गुणनफल को ३ यर यों लिखते हैं।
इसी भांति अ (क + ग), वा, अX क+ग इत्यादि प्रत्येक दिखलाते हैं कि क+ग की संख्या को अ की संख्या से गण दिया है। और अ+ क x अ+ग, वा, (अ+क) (+ग) इत्यादि प्रत्येक प्र कार अ+ ग के गुणनफल को दिखलाते हैं।
किसी पद के गुण्यगुणक्ररूप दो अवयव मान के गुणक को गुण्य का वारस्रोतक कहते हैं। जैसा।५ अय, यहां ५ को अय का वारयोतक कहते हैं । ५ अ को य का वारयोतक कहते हैं। और इसी लिये अ का वारझोतक १ है।
है। यह चिह्न भागहार का द्योतक है। जैसा। अक यह दिखलाता है कि अ की संख्या में क की संख्या का भाग दिया है । परन्तु भित्रपद का अंश भाज्य है और छेद भाजक है इसलिये भाज्यभाजकों को भित्रपद की रीति से भी लिखते हैं। जैसा, अ।
ऐसाहि। अ+क: ग-घ, (अ+ क) :- (ग-घ), 7- ये हर एक दिखलाते हैं कि अ+क की संख्या में ग-- घ की संख्या का भाग दिया है।
७। समान अर्थात् एकरूप दो वा बहुत पदों के गुणनकर्म को घात. क्रिया कहते हैं। और समान पदों की संख्या को घातमापक कहते हैं।
For Private and Personal Use Only
Page #21
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
परिभाषा । यही घातमापक घास क्रिया का द्योतक चिह्न है इस को मलपद के ऊपर दहिनी ओर लिखते हैं। जैसा ।
अ था अन इस के स्थानपर अर्थात् अको इसी में गणके जो फल होगा उस के स्थानपर अरयों लिखते हैं। और अइस को अका वर्ग वा प्रवर्ग कहते हैं।
साहि । ४ x अ, वा, अअअ के स्थानपर यह लिखते हैं। और इस को अका घनघा अघन कहते हैं।
और अxxx इत्यादि न पदों के गुणनफल के स्थानपर अन यो लिखते हैं। और इस को अ का भघात वा अनघान कहते हैं ।
और इसी लिये अका घातमापक १ है या यह इस के समान है। रसी भांति (अ+क), (अ+क), (+ कम से कम से अ+क सबर्ग, घमर मघातको दिखलाते हैं।
८। कोइ एक पद जिस किसी दूसरे पद का वर्गादिक घात हो उप्त दूसरे पद को उस शतरूप पद का वादिमूल कहते हैं। और उस धात के घानमापक को उस मनरूप पद का मलमापक कहते हैं। यही मूलमायक दस चिह्न में रह के मूलनिया को दिखलाता है।
जैसा। यह अके वर्गमूल को दिखलाता है । इस को प्रायः 'अ यों ही लिखते हैं। "अ यह अके धनमल को दिखलाता है।
अ यह पा के चतुघीतमल को दिखलाता है। न/ यह दिखलाता है कि जितनी न ही संख्या होगी उतना काल लिया है इसका का नहातमूल कहते हैं। चाहि। .. + य यह अ+ य के वर्गल को दिखलाता है।
For Private and Personal Use Only
Page #22
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
परिभान । क -य यह दिखलाता है कि अ-य के घनमूल को क से गुण दिया है । . .. सातवे प्रक्रम में नो घातमापकों के लिखने का प्रकार कहा है उस से यह सिद्ध होता है कि घातमापक का छेद मलमापक है । इस हत से घात और मल इन के कर्म समान क्रिया से बनने के लिये भिवघातमापक के द्वारा मूलक्रिया को दिखलाते हैं। ' जैसा । अरे यह अ के एकघात के वर्गमल को अर्थात् अ के वर्गमल को दिखलाता है।
इसी भांति अ यह अके घनमन को दिखलाता है । अ यह अ के चतुतमून को दिखलाता है। और अ यह अ के नघातमूलः को दिखलाता है।
और अ यह दिखलाता है कि के वर्ग का घनमूल लिया है घा के घनमूल का वर्ग क्रिया है।
ऐसाहि । अ + क ' यह वा (अ + क) यह अ + क के वर्गमूल को दिखनाता है । (अ- या यह अ-य इस के घन के चतुतमल है। वा चतुघांतमूल के घन को दिखलाता है।
है। इस प्रक्रम में दूसरे कितने एक उपयोगी चिह्नों को लिखते हैं।
(१) :::, : यह वा :,-, : यह तीन अवयवों का चिट्ट अनुपात को दिखनाता है । जैमा, अकग:घ, वा, अंकग :घ, यह दिखलाता
है कि अका क में भाग देने से जो लब्ध होगा वही.म. का । ___(२) - यह निह समता को धा एकरूपता को दिखलाता है । जैसा, + य = क-ग, यह दिखलाता है कि अमें य को नोड़ देने से जो बनता है सो क में ग को घटा देने से जो बचता है उस के समान है। - - रस को अपसि (७२) हे प्रक्रम के (६) वी युक्ति में देखो।
For Private and Personal Use Only
Page #23
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
परिभाषा |
ऐसाहि । य + अ = १ - कल + २ग यह दिखलाता है कि य+,
र
- क और ल + २ग इन तीनों का मोल समान है ।
(३) जिन दो पदों के बीच में < यह वा > यह चिह्न रहता है उन में जो पद चिह्न के अय की ओर रहता है वह दूसरी ओर के पद न्यून होता है । जैसा । > क, वा, क< अ, यह दिखलाता है कि है ।
से
सेक न्यून
(४) ७० यह चिह्न अन्तर को दिखलाता है। जैसा,
क. यह और क इन में जो छोटा होगा उस को बड़े में घटा देने से जो शेष बचेगा उस को दिखलाता है ।
(५)
• इस को जिसलिये बोलते हैं ।
(६) : इस को इसलिये बोलते हैं । (७) इ०, इत्या०,
Acharya Shri Kailassagarsuri Gyanmandir
.....
ये हर एक चिह्न इत्यादि के व्योतक हैं ।
१० चह्नों से वा बीजात्मक अक्षरों से जो संख्या वा राशि दिखलाया जाता है उस को पद कहते हैं सो दो प्रकार का । एक केवल और एक संयुक्त |
1
(१) जो पद एक हि संख्या को दिखलाता है वह केवल पद है जैसा । कग, ५२ ।
(२) जहां दो वा तीन इत्यादि अनेक केवल पद परस्पर संबद्ध हैं। वह संयुक्त पद है | जैसा । अ + क, बा, य' + २ श्रय
- क... ।
संयुक्त पद में जो पहिला पद है सो और जो केवल पद है सो यदि धन हो तो वहां प्रायः धन चिह्न नहीं लिखते । जैसा, यहां
वाय ।
संयुक्त पद में जो केवल पद रहते हैं उन के लिखने का कुछ क्रम नहीं है । जैसा | + ५ क ४ ग + ५क, वा, ५ क
www
--
४ ग वा ४ ग, वा, 8 ग + + ५क, बा,
- ४ ग + चा था, ५ क +
-
४ ग
d
For Private and Personal Use Only
Page #24
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
परिभाषत। +५+ अ, इन छओं का मोल वही है जो अ.और ५क के योग में 8 गीत घटाने से बचता है। ___ (३) जिस संयुक्त पद में दो या तीन इत्यादि के समको क्रम से द्वियुक्पद वा त्रियुक्पद इत्यादि कहते है जिस में हर केवल पद रहते हैं उस को बहुयुक्पद कहते है। जैसा । अ+ क यह द्वियुक्पद है। . अ- २ अय + ५य यह त्रियुक्पद है। अ- ४ क+५ग - घ यह चतुर्युक्पद है ।
और अ-२+३१-४ च+५छ-दू० यह बयुक्पद है। ११। जिन के अतर और वर्गादिक समान हैं वे पद सजातीय कहलाते हैं। जैसा । ३अ, ७ अ, वा,-५ अय, अय, ७ अय ।
१२। जिन के अतर और वर्गादिक भिवरूप हैं वे पद विजा. तीय कहलाते हैं। जैसा । ७ अ,५क, वा, ३ अ, ६ अय, ८ अरे। ..
१३। जो चिह सब धन वा सब गुण हैं वे सजातीय हैं। १४। विजातीय चिह्न वेही हैं जो कुछ धन और कुछ क्षण हैं। १५। जब किसी पद का मोल अव्यक्त रहता है तब उस मोल को उन्मिति कहते हैं और जब वह मोल ज्ञात रहता है तब उस को मान कहते हैं।
१६ । किसी पद के स्थान में उसी पद के उन्मिती के वा मान के रखने की क्रिया को उत्यापन कहते हैं।
१७। अब इस परिभाषा का अच्छा ज्ञान होने के लिये अलग २ चिह्नों से जुड़े हुए पदों का समुदित मान उत्थापन से जानने के लिये
For Private and Personal Use Only
Page #25
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
परिमाण । बुध उदाहरण लिखते हैं। इन उदाहरणों में 4-५, क-8, ग* 3, घ-२,च-१ और छ - • माना है।
(1)
+
-+२
+९४४-३+२४२ -५+८-३+४ = १७-३ = १४ ।
(२) अक-(ग-घ) =५४४ - (३-२) = २० - १ = १८ ।
(३) (+३ च)(घ-8 छ) = (५+३४ १)(२-४४०=०४२ =१६ ।
(७)
अ+क- (ग--घ)
+क-ग-घ
५
५+8-(३-:)
+४-३-२
-१ -
२
।
50. ॥
की (+का ग-घ) (२) अनक ग-घ
(५+8) (३-२) Ex१ ५,४४३-३-३+१२- १५
(६) (अ-क) = (३-४)२ == १२ = १।
(७) (+४ चक) = (५+ ४४१४०)३ = (५+ ०)३ == ५३ = १२५ ।
(८) {अ- (क -- ग)२}" = १५-- (४ -- ३)२} = (५ -- १२,४ = * * २५ ।
(e) V
+२
+ ग =V
+२४४+३=/
+८=V१६
(१०) अ-३-V = Ve=
-ग = /२५-१२-
२५-
अभ्यास के लिये और उदाहरण ।
(१) अ+५क-य+ १३९ इस का मान क्या है? जो इसमें -७, क= २, य-५ और र
उत्स, २५ ।
For Private and Personal Use Only
Page #26
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
परिभात । (२) अप-२कर+गल इसे का मान क्या है? जो इस में - ४, -३, ग-२, -५र-६ और ल ।
उत्तर, .. (३) अकग-अकय+ अगय-कगय इस का मान क्या है? नो इस में अ६. क =५, ग=३ पोर य-२।
उत्तर, ३६ ।
(४) अ (क+य) + ग (क-य) इस का मान क्या है? जो इस में २, क = ७, ग=४ गार य-५।
उत्तर, ३२ । (१) अ +३ अप-५यर इस का मान क्या है जो इस में और य=३।
उत्तर ४५। .. (E) (अ+ य)२-३ (अ-य) (क-य) इस का मान क्या है ? नो इस में अ-- ८, क = ८ और य =५ ।
उत्तर, १६० ।
(७) (य +1)२ - (य+यर+) इस का मान क्या है? नो रस में 13 और 1- हो। उत्तर, ३६।
+य अर-घर (८) नोअ = ३और य = हो तो
-सकामान
अ-य अ+ य क्या होगा?
उत्तर, ३। () जो अ-२, क - १३ और ग=५ हो तो अW/क-ग)र -/अ (क + ग) रस का मान क्या होगा?
उत्सर, २।
For Private and Personal Use Only
Page #27
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
परिभाषा । ... (१०) V {य (य+21)+ ल} + V ल (२र-ल)-५ य} इस का मान क्या होगा ? नो इस में य = ३, र= ४ और ल-हो।
उत्तर, १२ ।
१८। इस शास्त्र में कितनी एक प्रत्यक्ष बातें बहुत उपयोगी हैं जिन को सिद्ध करने के लिये कुछ उपपादन नहीं करने पड़ता। और जिन को सुनते हि सब लोग मान्य करते हैं उन को लिखते हैं।
(१) जितने राशि हर एक किसी दूसरे राशी के समान हैं वे सब परस्पर समान है।
(२) समान दो राशिओं में समान हि मिलाने से वा घटाने से वा उन को समान से गुण देने से वा उन में समान का भाग देने से उन का समत्व बिगड़ता नहीं।
(३) जिन दो राशियों का अन्तर जितना होता है वे र्याद एक हि राशि से अधिक वा न्यन किये जावे तौभी उन का अन्तर उतना हि रहता है।
(8) जिन दो राशियों का योग जितना होता है उन में से एक राशि यदि किसी एक राशि से अधिक किया जावे और उसी से दूसरा न्यन क्रिया जावे तौभी उन अधिक और न्यन किये हुए राशिओं का योग उतना हि होता है।
(५) न्यन और अधिक दो राशिओं को एक हि राशि से गुण देओ था भाग देओ तौभी क्रम से वे न्यून और अधिक हि रहते हैं। .
(६) जितने राशि हर एक किसी एक हि राशि से द्विगुण वा अधिक गुण हैं अथवा किसी एक हि राशि के आधे वा कोई अंश हैं वे सब राशि परस्पर समान हैं।
(७) जो राशि किसी दूसरे राशि से जोड़ के घटाया जावे या गुण के भागा जाये तभी वह राशि जों का त्यों रहता है ।
For Private and Personal Use Only
Page #28
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
संकलन ।
. ११ (5) को राशि अपने अंश से बड़ा होता है और अपने सब अंशों के योग के समान होता है।
अध्याय २ ।
इस में मंकलन, व्यवकलन इत्यादि छ परिकर्म और प्रकीर्णक हैं।
संकलन । १६ । यहां संकलनीय पदों को अपने २ धन Vण चिह्न के साथ अलग २ लिखने से जो बनता है सो संकलित अर्थात् योग है । इस में यदि कुछ सजातीय पद हों तो उन को मिला के एक हि बंद कर देओ और यदि विजातीय पद हों तो उन को अपने धन श्रेणी चिह्न के साथ अलग २ लिखो सो हि उन का योग
यहां सजातीय संकलनीय पदों का संकलन दो प्रकार का है। .. पहिला प्रकार । जब सजातीय संकलनीय पदों के चिह्न सजातीय हैं।
२० । रीति । संकलनीय पदों के संख्यात्मक वारस्रोतकों का व्यक्तगणित की रीति से योग करो और उस योग के पीछे सजातीय पद के अक्षर वा अक्षरों को लिख के पर्व में द्योतक चिह्न जो धन घा भूण होगा सो लिखो।. ___ * इस की युक्ति यह है। + अ और + क इन का योग परिभाषा से + + (+ क) यह है । अब चौथो प्रत्यक्ष बात से।
+ + (+क) = + + क + (+क-क) = + अ + क + 0 = + क । ऐसाहि। - अ, - क इन का योग = - अ + (-क) %3D - -क+ (-क+क) = - -क+0=-अ-क।
इस से स्पष्ट है कि पदों को अपने २ धन ऋण चिह्न के साथ अलग २ लिखने से संकलन बनता है। __ + इस की युक्ति यह है । यदि असक रुपया का द्योतक हो और क एक पैसे का योतक हो तो और क इन दोनों का योग दो रुपये भी न होगा दो पैसे भी न होगा किन्तु + क एक रुपया और एक पैसा यही होगा। भास्कराचार्यजी ने भी कहा है कि (योगान्तरं सेषु समानजात्यार्षिभिनजात्याश्च एथक स्थितिः स्यात्)
For Private and Personal Use Only
Page #29
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१२
उदाहरण । (१)
५
४ प्र
उदा० (४)
www.kobatirth.org
३ ग्र
२
संकलन |
解
(२) - ५ कर
३ ग्रे
- क
可
३ घर -
६ ल
१० अ
१०यर- ११ ल
(१) यहां ५ ऋ, ४ . और
इन का योग १०
होता है। क्योंकि यह एक हि पदार्थ पांच बेर, चार बेर और एक बेर मिल के दस हि बेर होगा यह स्पष्ट है ।
२ क
-१४कर
-
(२) यहां – ५२ -०१ और २कर इन का योग १४ कर होता है । इस का भी कारण स्पष्ट हि है कि जो कर यह एक हि पदार्थ पांच बेर, सात बेर और दो बेर ऋण किया जावे तो वह पदार्थ चौदह बेर ऋण होगा ।
Acharya Shri Kailassagarsuri Gyanmandir
www
(३) इस में पहिले ५ यर, २यर और ३ पर इन का योग १० पर और - ल९ - ४ ल और -६ ल े इन का योग - ११ल होता है । अ १० घर - ११२ ये दोनो विजातीय हैं इसलिये इन का १० घर - ११ ल१ यही योग है ।
दूसरा प्रकार । जब सजातीय संकलनीय पदों के चिह्न विजातीय हैं
(३) ५ यर -
२यर -
२१ । रोति । धन वारयातकों का और ऋया बारातों का लग २ योग करो फिर जिस योग की संख्या अधिक हो उस में जिस की संख्या न्यून हो उस को घटा के जो शेष बनेगा उस से आदि में अधिक योग का चिह्न लिखो और उस के पीछे
सजातीथ पत्र लिख देशो
(५) - ३कर + ५ य
१३ कर ३ प्रय
- ४ क + अयरे
९ करे- १० अय
१५ क ७ वायर
For Private and Personal Use Only
ल
४ ल
-
(६)
२-३ क +२
४ +9 श्र Adul ५ क २२-५ क + ६ क
•
क
८ + क
१५ २ - ६ क
Page #30
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
संकलन । (8) दस में पहिले अपार अपन का योग अ। फिर - चौर -२ अरन का योग - ५ है। अब अ, बोर -५७ दम का योग -५ अ, वा, ३ है।
इसी भांति पांच पार छठने उदाहरण में भी योग जानो।
२२। अब यदि संकलनीय पदों में सजातीय पदों के नीचे सजासीम पंक न हो तो जोर सजातीय पद इधर उधर होंगे उन पदों को खोज के उन के अलग २ योग करो फिर योग और जितने शेष विजातीय पद होमे उन सभी को अपने २ धन वा पण चिह्न के साथ अलग २ लिखो। उदा. (७) २कग - २ अक्र+ग। यहीं
कर-५-२ कग+क/२कग-२ काग+कम-कग अ + ५ अक -क -श्यक+५प्रक-३पक - .
१७-२ग+क्रम-३यक | ग-२ --गर घोग कग-ग++ + / कर-कर .
-५+ १७ = १२ पार कर
+४ प्रक
अभ्यास के लिये पर उदाहरण । (१) २ अ, ८ अ, अ, और १४ अदन का येोग करो।
उत्तर, २५ (२) अ + प्रक, १३ +२ अक, अ+५ अक और इन का योग क्या होगा?
. उत्तर, २९ अ+१८ क ।
(8) ५ +७, ३ +२ अ म +३ और १३ को नोड़ो। . उत्तर, सय + १३ अ।
+
दम
For Private and Personal Use Only
Page #31
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
98
संकलन |
(४) १२ ८२ - २ यल + ल१, ३६२ - ५ यल +9 ल, ११ य + २ल और य' - ४ यल + ल इन का योग क्या है ?
उत्तर, ३५ ८२ - १४ यल + १८ल ।
(५) य + ६र + श्ल, ४य +५+ ९ल, ६ + ३र + ल और य +५+8 ल इन का योग क्या है ?
उत्तर, २५ +१७र + १६ल ।
/
,
(६) ४ - ५ क + ०२ - ५ - ६ - ग और
-
+ ३९ क + २ग इन का योग क्या होता है ?
१६ २ - ३ क + ११ गरे ।
उत्तर, २१ अ२ – २९.८२ ।
(८) य - ५ अथ +
५
३ य -- ७ अथ + ५२ - ३ ३ र ४
इन का योग कहो ।
उत्तर,
(७) ८- ९२, २ - ३८२, ५-१० य और ६२ - ७ य
इन को इकट्ठा करो |
-
>
Acharya Shri Kailassagarsuri Gyanmandir
उत्तर, १३ य३ - ६ अ + ३ ३ ।
३ यल
५य३ + + २१ ।
+ १२ क
+ 8-8 अथ – २३,
+ २ - ८
+
(C) आयर + ५ कथ - ७ग, ३ अ + ८ कथ -२, ५२ + ९ कय -४ ग और 9 अय + कय - ६ग इन का योग क्या होगा ?
उत्तर, १६ + २३ कथ - १६ ग ।
-
(१०) ३ करेंग - ७घ ेच २, ४ करेग + ३ घरेच करेगघच, २ + २घच' और — ५ क + ९ घ च दून को जोड़ के योग कहो !
उत्तर, - ३ करेग + ६ घ
।
For Private and Personal Use Only
(११) ५० – ७ ८ + ४य + १७, – २+५+११ - ८, ०६३ +62-84+3, ca2 −q2 + s +8 m - १३८३+२८२
-
- १६य + ५ इन का योग कहो ।
उत्तर,
Page #32
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
संकलन ।
१५ . (१२) ६३+४ अय' - ७ अश्य + १० अय-२ अ य+८ अ, य --३ अय' + ५ अ + ४ अय-- ७ अ य + ११ अ, -८ + अय' --३ अय३ - ५ अय२-२ अय-६अ, - २ य - २ अय - ४ अय३ - अय+६अय+8 अ और य+ अय' +६अ + अमेयर -५ अय-१० अइन का योग करो।।
उत्तर, १२ य+८ अय-३ अय+ १४ अय- १० अ य + ७ अ। . (१३) अ + ७ अय-५क-- 8 गरे, ग–४ क + अ + अय, अय
+५ग-२ य+५१२ और ४ कर-४ घ-२ अय+२ अर इन का योग क्या होता है?
उत्तर, १० अर+७ अय-५क+ग+ग-२३+५२-४ घ। (१४) य+6 यर -८,६ यर-४ य२२, -२२+५यर +५ यर, १२य - ११र२-७ यर और ८यर+३+ १० य दून को जोड़ो।
उत्तर, ३० +२१ घर-१६ । (१५) ४ अ- ८ अय+५ अय, ७ अ + ४ अय-या, ८ यः +५ अ-११ अय, और-१३ अयर-७ यः + अ दून को नोड़ी।
... उत्तर, १८ अ - १२ अय-४ अय-८य ।
(१६) यर-३ल+४ अक-५कर,४ क-२क+७यर-अ,७कर +३ +२ल+यर, और ५ अक+४ अ-२क+अरे दून का योग क्या है?
उत्तर, यर-ल+१२ अक+२क+यर+४ । (१७) अ- आ+8 इ, अ-५ +२, ७-३ा +और ४ अ-आ+६इन का योग क्या होता है ?
उत्तर, २० अ-१८ +१३ । . (१८) ६क+४ग-२१,३क-१३ ग+९घ, -क-ग+ घ, और क + ५ ग-१० घ इन का योग क्या होता है ?
उत्तर, क- ग+8 घ।
For Private and Personal Use Only
Page #33
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
संकलन ।
(१९) ३१-२छ+ ज,५७-३-झ,-३ -५+, और ज-४ छ + ११ इन का योग क्या होता है?
उत्तर -६+१ज । (२०) ६अ + + ४ अ'क', - २ अक+३ - ७ अक', ६'क'- अ +६ , - ७ अ + क - ५ अ और क+ अ - १५ अक दन को जोड़ा।
उत्तर, ८ - १२ अ क + १३ अक-२२ अक' + १००। (२१) २य -- ४ यर+रयर, ६ र+५य'- ', ४ यर -२ यर' + e यर', - ३ ''+ यर-३र और ५ -३यर' +य दन का योग करो।
उत्तर, १० +६ यर+२यर+५यर' - ० यर+६यर
(२२) ६अ + ११ अक- १० अक - १६ अग, -६ अक-११ -१० +१८ अकग, ६ अग+ ११ अकग - १० ग-१६ अग+ १६ कगर श्रीर १९ अग - ७ अग:-१६ क ग + ७ कग-ग दून का योग करो।
उत्सर, ६अ + ५ अक - २१. अझ - १० - १३ अग +8 अकग - २६ ग- अग + ६६ कग-ग।
(२३) ५ + ३ अय- अय' + य', हय १२ म+ अय -५ अय', ४ अ + ३ अय- ५ य -- ७ अरे, अय-५ अय + ११ अरे - य और ८ अ +२+३-६अ य इन का योग करो।
उत्तर, . (२४) अर्थ- २ +३/+क+8 ल ।इ, ३ अय- ५ यर - ४ / अ+ क + ७ लV, - ५ अ + या + ५/ अ+ के -२नार २अय+यर-११/ +क-एल/ दून का योग क्या होता है ?
उत्तर, अय+३यर'- 01/ + ।
For Private and Personal Use Only
Page #34
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
ध्यवकासन । (२५) ३ (अ+य)-- १ क (अ+य) + ७ ग',(अ+य)+Cक (अ+य) +५ गर, ४ (अ+ )+२ क (I+य) -६ग, (अ+य)२-३ क (अ+य) -२गर और (अ+ य)२-क (अ+य)-६ गबन का योग क्या होगा?
उत्तर, १५ (अ+य)-३ क (I+य)-२गरे ।
२ व्यबकलन ।
२३ । रीति । जिस पद में किसी दूसरे पद को घटाना हो उस पद को ऊपर लिख के उस के नीचे उस दूसरे पद को लिखो ऐसा कि जिस से सजातीय पदों के नीचे सजातीय पद आवें । फिर नीचे लिखे हुए पद में जो २ केवल पद धन वा श्ण होगा उस का द्योतक चिह्न जो धन हो तो ऋण और ऋण हो तो धन करो वा वैसा किया समझो। फिर योग की रीति से उन का योग करो वही अन्तर होगा । उदा० (१) १३ अ (२) - ७ कगर (३) य-५र.
अ . -३कगर ४य+२ ५
-४ कगर ५०-७१ (१) यहां अकोण करके १३ अ में जोड़ देने में ५ अ अन्तर हुआ।
(२) यहां-३ कग को धन करके -- ७ कग में जोड़ देने से - ४ कगर अन्तर सिद्ध हुआ।
_* रस की युक्ति यह थे।+श्र, और + क, रन का परिभाषा से अन्तर + -(+क) यह है। . . .
अब तीसरी प्रत्यक्ष बात से
श्र-(+क) = -क-(+क-क)= -क, वा! शाहि + अ - क बन का अन्तर - -(-क) ... e +क-(-क+क) = +क, वा + (+क).
इस से स्पष्ट है कि घटाने के पट के धन ऋण चिह का व्यत्यास कर के उस को जोड़ देो यही व्यवकलन है।
For Private and Personal Use Only
Page #35
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
व्यवकलन । (३) यहां रय-४३=५ य, और -र-र -र इस लिये त्य-५र-(४ य+२र) =५य-र यह अन्तर है।
अभ्यास के लिये और उदाहरण ।
(१) य में ५य को और १३ अय में-अय को घटा के शेष कहो।
उत्तर, ४ य और १४ अय । (२) ६+ ११ क इस में अ+८क इस को घटा देने से शेष क्या रहेगा?
उत्तर, ४ +३क। .(३) २ अ- य इस को ५ अ-04 इस में और - य+ १५र इस को १७ य+दर इस में घटा देओ।
उत्तर, ३ +२ य और २६ य- र। . (8) < अय-८ कल इस में अय- ११ कल इस को घटा देओ।
उत्तर, २ अय+३ कल' । (५) १५ अ +२ कर इस में १२ अ-३ कर इस को और -६यर -७यर दूस को -३ य+५यर इस में घटा देग्रो ।
उत्तर, ३ अ +५ करे और ३ य + १२ यर । . (E) ५ अयर + कर इस में अय२-३ कर +५ल इस को घटा देखो।
उत्तर, -३ अयर + १२ कर-५ ल । (७) अय-कर+गल इस में ३ अय-५कर+५गल इस को घटा देओ।
उत्तर, ४ अय-४कर+३गल । (८) ५ अ-३ य+५क-४ग इस में ३ग-४ अर+ घ-य इस को घटा देतो।
- य+५क-७ग-८घ।
For Private and Personal Use Only
Page #36
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
व्यवलन । (e) -६ + ४ यर- ३२ इस को य२ - ५ यर +7 इस में घटा के शेष कहो।
उत्तर, १५ य- यर + ११।। (१०) २ अ + ३ अ + ४ अय + ५ य इस को ५ अ - ७ अश्य +६अयर-४ या इस में घटा देने से शेष क्या रहेगा ? ... उत्तर, ३ अ - १० अरेय+२ अय- हय ।
(११) ५ अय+कयर-गर इस में क्या नोड़ देने से योग ८ अय + ४ कयर +३गर इतना होगा?
उत्तर, ३ अय--३ कयर + १२ गर।। (१२) अ+ ४ अक --५ अग +२२-३ कग इस में ३ अक-५ गरे +२क+७ अग- अरे दूस को घटाने से शेष क्या रहेगा?
उत्तर, १० +अक-१२ अग-३कग+५गरे। (१३) -७ य३-१३ य+२य-९ इस से १८ यः-१५ यर +७य +१२ यह कितना अधिक है?
उत्तर, २५ य-२३+५ +३१ । (१४) - ५ +३ अय-८ इस को -८ अ - अय + १७ इस में घटा देओ।
उत्तर, -३ अर--१२ अय+२५। (१५) ६य + ४ यर-२यर+५ यर --- " इस में -२य + ५ यर-अयर+या+रइस को घटा देओ ।
उत्तर, ८३ - य+५यर+४ या -१५२ । (१६) अ + अक+कर-१५ इस में कर-५ कग - गरे- १२ इसको घटा देओ।
उत्तर, अ+ अक+५कग+गर-३। (१७) ८५-७ + १६ य+३य-५य + १३ इस में- १५+२ य -३+४ य+६य - दुस को घटा देखो।
. उभर, १७२५-१३ य° + १५ +8 य२-७ य+२८ ।
For Private and Personal Use Only
Page #37
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
कोष्ठ ।
(१८) अ-क+य इस में -- ७ ग+३र इस को घटा देओ।
उत्तर, ७ -६क+ ग+रय-र । (१९) ० (य + र) - ५ (य+र) ल-१३ ल इस में ६ (य+र)२-६ (य+र) ल+ १२ल इस को घटा के शेष कहो।
उत्तर, (य+र)२+३ (य+र) ल-२५ ल।
(२०) २य-३कर -RVE+५/ -य बस को य+६ कर +५VE+२V - इस में घटा देने से शेष क्या रहेगा ?
उत्सर, ५य+ कर+EV ६-३ अ-य।
संकलन और व्यवकलम में कोष्ठ की व्याप्ति ।
२४। जिस काष्ठ के आदि में धन विह लगा है वह दिखलाता है कि उस कोष्ठ के भीतर का पद जोड़ा हुआ है * । इस लिये उस कोष्ठ को मिटा देने से भी उस भीतर के पद का माल यथास्थित हि रहेगा क्यों कि जोड़ने के पद को अपने सिह के साथ अलग लिखने से योग बनता है। । और जिस कोष्ठ के आदि में ऋण चिह लगा है वह यातित करता है कि उस कोष्ठ के भीतर का पद घटा हुआ है। इस लिये यदि सूण चिह से जुड़े हुए कोष्ठ को मिटा देना हो तो उस के भीतर जितने केवल पद हों उन सभों के धन ऋण चिह्न को पलटा देओ क्यों कि उस पद को घटा देना है।
• यदि किसी पद के कोष्ठ के भीतर और कितने एक कोष्ठ हों और उन सभों को उड़ा देना हो तो उतनी बेर यह पहिला कर्म करने से सब कोष्ठ उड़ जायेंगे। जैसा, . ___ * चौथे प्रक्रम में देखो।
For Private and Personal Use Only
Page #38
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
कोष्ठः।
(१) + (+क)= +क। (२) य+ (-1)=य-र। (३) अ+ (क-ग) = +2--।
(४) (य२-३य-७)+ (य+२य+9). = य२-३ य-0+ य+रय+७=२५-
(५) अ-(+क)-अ-क। (६) प-(-फ) = 4+-फ। (७) अ- (क-ग) = -क+ग। (८) (य+२ यर+५१२)--(य-४ यर-२१२) - ६यर+ । (C) अ- (अ-क) + (२ +क)- (-३ग) = +२ +.ग। . (१०) २ अ- अ- (अ.--क)}= २ अ-अ+ (अ-क) = +-क = २ -क।
अभ्यास के लिये और उदाहरण । (१) (अ-क) + (क-ग)= अ-ग।
(२) (अ+२ अक - ४ कर) + (३ अर-५ अक+४ क) =४ पर -३ अक।
(३) ४ य-५+२+ (३+७१-५ल) =+२१-३ल। (४) (+२र)-(य-५२) = ७१। (५). (अ+-क)-(क+ग)+ (ग+घ)-(घ+च)-अ-चा . (६) (३+३यर+र)-(य-५यर+२२) -- यर-र। (७) ४ अंक-1 (अ+२ अक+क)- (अ-२ अक+कर)} ८० ।
(८) ५य +२ -- (३य-या)-१३-७+ (२यर+यर) -२ य-यr+R
(C) अ + १२२- (५ अक-क')} - {e.अर- (२ अक+कर)} = ३ -३ अ + १० कर।
(१०) ४य + ५यर-(३५+२यर - (६२-५)}) - ७ ३यर-५।
For Private and Personal Use Only
Page #39
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
२२
कोष्ठ ।
२५ । अनुमान १ । धन चिह्न से जुड़े हुए कोष्ठ में किसी पद को लिखने से उस का मोल बिगड़ता नहीं । और ऋण चिह्न से जुड़े हुए कोष्ठ में किसी पद को लिखने से उस पद में जो केवल पद होंगे उन सभों के धन ऋण चिह्न को पलट देने से उस पद का मोल नहीं बिगड़ता ।
जैसा, अ + श्क- ३ग + ५घ
1
Acharya Shri Kailassagarsuri Gyanmandir
+ (श्क - ३ग + ५घ)
=अ+श्क + (-- ३ग + ५घ)
।
और २-३क- ५ +घ २ - ( ३ क + ५ग -घ)
= २-३क (५ग -घ) 1
२६ । अनुमान २ । कोष्ठ का धन ऋण चिह्न पलट के जो उस के भीतर के सब केवल पदों के धन ऋण चिह्न को भी पलट दिया जाये तो उस कोष्ठविशिष्ट पद का मोल बिगड़ता नहीं ।
जैसा, अ + (क-ग) र =
- ( - क + ग ) र,
थ - अ (२क - ५र) =
+
(-२क + ५र),
- ४ (-२क +३ग) = ४ ( + २क - ३ग) ।
जिन सजातीय पदों के वारयोतक अक्षरात्मक हैं उन का संकलन ।
२७ । जब सजातीय संकलनीय पदों के चिह्न सजातीय हैं तब यदि वारयोतक केवल पद हों तो उन वारयोतकों को धन चिह्न के साथ कोष्ठ में अलग २ लिखो । और यदि वारयोतक संयुक्त पद हों तो उन का योगरीति से योग करके उस को कोष्ठ में लिखा 'फिर उस कोष्ठ के पीछे सजातीय पद लिख के आदि में योतक चिह्न जो धन वा ऋण होगा सो लिख देओ ।
उदा० (१) नाथ - श्र
३ कय- घर
(२) ( त + ३थ) अ - (४प - ३फ) थ (३त- ५थ) - • (३प +५फ) य ४ चय - ५ कर (श्त + ९थ) - ( प - ७फ) य (+३+४च) य - (२ग+घ+५छ) र । ( ६ त + ७थ)
- ( प - ५फ) य ।
For Private and Personal Use Only
Page #40
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
कोष्ठ । २८। जब सजातीय संकलनीय पदों के चिह्न विजातीय हैं तब यदि वारद्योतक केवल-पद हों तो उन केवल पदों को अपने २ धन श्ण चिह्न के साथ एक कोष्ठ में लिख के उस कोष्ठ के आदि में धन चिह्न लिखो और उस कोष्ठ के पीछे सजातीय पद लिख देओ। और यदि वारद्योतक संयुक्त पद हों तो वहां जितने संकलनीय पद ऋण चिह्न से जुड़े होंगे उन को (२६) वे प्रक्रम के अनुसार धन चिह्न से युक्त करो वा जितने धन चिह से युक्त होंगे उनको (२) के प्रक्रम से ऋण चिह से युक्त करो यो संकलनीय पदों के चिहों को सजातीय कर के (२७) वे प्रक्रम से उन का योग करो। उदा० (१) ३ अयं +३ पर (२). (३-२क) र-(च+जन
कय -२ फर (२-५कर+(३१- जाल
. -५ गय -४ बर (अ+४कर-(एच+२न)ल (३ +क-५गय+ (प-२फ-४बर।( +कार-(७च+रज)ल
जिन सजातीय दो पदों के वारयोतक अतरात्मक हैं उन का व्यवकलन ।
२९ । रीति । घटाने के पद का धन ऋण चिह्न पलटा के अव्यत्रहित प्रक्रमों से योग करो। ___ उदा० (१) अय-कल .. (२) (अ- प) य+ ( ग+५फ) र
गय+घल (२+३प)य- (४ग- फ) र (अ-ग) य- (क+घ) ल। (५ -४५) य+ (५ग+४ फ)र ।
-
अभ्यास के लिये और उदाहरण ।।
(१) अघ-घर+२जल,कय-३चर-झल और गय-४कर +१२ल इन का योग क्या होता है ?
उत्तर, ( + क+ ग) य-(घ+३ +४छ) र + (२न- झ+१२)ल । .
For Private and Personal Use Only
Page #41
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Brg!
(२) ३पथ + ५ फर, ० ब - ४ मर, और - द + बरन का योग भारो । (३८+०ब - ८) य + (५-४म+ब) र ।
उत्तर
(३) श्रथ - कर + गल - घत्र, कथ - गर - घन + वय,
गय- घर + चल + छत्र, घय - चर - छल - नव
दून चार पदों का योग क्या होता है ?
उत्तर, ( + क + ग + घ) य - ( क + ग +घ + च) र
+ (गघ+च-छ ) ल - (घ-च-छ+न) व ।
Acharya Shri Kailassagarsuri Gyanmandir
(४) ७ अय - ५ कथ + २ग - २ कप + ३ गय-घ -५ घघर - ० + १७ और ४ ग + २ पय+फ इन का योग क्या होगा ?
+ २ घ +१७+फ ।
उत्तर (9 अश्क + ४ - ५घ) य े - (५- ३ +०-२५) व्य
(4) Ma* + Bar + ne2, auc +El2 + Aq2 ârc − ac2 + qu2 - दयर दन को जोड़ो ।
-
उत्तर (अ + अ+थ) यं *+ (क+च- द) घर + ( ग + छ - त) र !
-
(६) (अ + क -ग) य + (त+थ + द) र ( क + ग) य + (त+द) र ( +
+ ग य + (तथ + द) र, और (अ + क + ग) य + (-त +थ + द्व) र इन का योग कहा । (२+२क + २ग) य + (२+२थ + द) १।
उत्तर,
१
(७) (अ + ३क) य + (४ - ५ ) यर (३ – ० ग ) ₹९, (२न - क) य
-
-
- ( + ४ क) घर (अ + ५ग) र े, (५+२)
+ (३+५) यर.
• (२ अ + ग) १° और (+8 क) यर (क) यर-२र इन का
www
योग क्या होता है ?
उत्तर,
(९+८क) य + (५ - ३ क) घर - ( - ) र ।
(e) (अ-क+ग) - ( त +थ - द ) थर + (२०* +फ) ₹९, (क-ग -घ) य + (घ+ द -ध) यर - (४प१-३फ) र (घ- च+) य* + ( + + न) पर
For Private and Personal Use Only
Page #42
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
कोष्ठ । -- ( -फ), घोर (च-छ+ज) य+(त-३८-नान + (५५२-६फ) र दन का योग क्या है?
उत्सर, (अ+ज) य+ (२-पर-फर। (e) (२ य + ३ र) य' + (५र-७ ल) यर- (५ ल-य),(य-५)य -(४+३ल) यर + (३ ल + य)र, (३य-र) य-(र-११ ल) यर । - (ल-२ य) और (५ य+र) यर- (र+५ल) यर+ (२-३य) र इन का योग क्या होता है ?
उत्तर, (११३-२र) य-(२+४ल) यर-(ल-य)।
(१०) (अ+२ अक) य - (क+५ गर+ (ग+४ गघ)ल, (३ अक-२ अकर) य+ (५ करेग+३गर) र- (४ गघ-५गवर) ल पौर (२ अकर-कर) य- (४ कगर- ५ ग) र (२ गघ+ ७ घ)ल इन का योग क्या होता है?
उत्तर, (अ+ ५ क-क) य- (क+कग-५ग)र + (ग+ ७ गध+ घ) ल ।
(३१) (३ अ-२ अक) य:- (४ च चक) यर + (त-५ मथ) घर -(२५+३ पफ), (३ चछ - छ) यर-(६ तथ-३१) यर + (७५-८ पफ) र + (अक-५गर) य, - (२ +९ थर) यर' -(४ प + फर) र + (७ अक+गर) य - (२ च+ पछ) यर और (पफ - ५ फ) र३ -- (४ १२ - 1) यर' + (0२-५३) यर -(२ अ + ७२) या इन का योग करो।
उत्सर, (अ+६ अक-३ग) - (११ च+७ चछ- छ) यार - (११ तथ+ १० थर) यर + (प२-२ पफ-६ फरार। ..
(१२) ७ तन- ४ पय + ३ नर इस में २ य+३ फय-५मर इस को घटा देओ।
. उत्सर, (७२-२५) -(४+३फ) य+ (३ +५म)।
For Private and Personal Use Only
Page #43
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
२६
कोष्ट
(१३) कय- घर - छल + १२ इस को अथ - गर + चल +9 इस
में घटा देने से शेष क्या रहेगा ?
उत्तर,
- ४ बय
www.kobatirth.org
+ रभ ।
(क) य + (घ-ग)
(१४) ४ - ५ चय' + ९ तय + ८ भ इस में भ इस को घटा देओ ।
-
उत्तर
Acharya Shri Kailassagarsuri Gyanmandir
(४७ प ) - (५ च+फ) + (लत +8 ब) य
उत्तर,
+ (8 ¤2 + C☎3) T2 |
+ (च + छ) ल े - ५ ।
पय३ + ८ फय
--
(१५) २ कय े + ३ क यर - ४२ इस का ५०-७० ऋपर + कर इस में घटा देओ ।
(५२-२ क) घरे - (७ क + ३ क२) पर
(१६) (३५ क) अथ
( + २क) अ + (२ + फ) पर 2 + (
उत्तर
-
( प - फ) यर + (- ३ ) १३ इस में
२क) र इस को घटा देओ । (२-१क) य - ३ पयर + (२क - ३) १३ ।
-
(१७) (क) तर - ( प + २फ) तथ + फथ इस में ( क + २ग) त + (३प - फ) तथ + (फ ेब २) थ इस को घटा के शेष कहो ।
-
उत्तर, (अ - २ - २ग) त े (४ प + फ) तथ + ब ेथ' । (१८) ( प - ३ पफ + फ) अथ – (न े- २नम - मर) कर इस में (प े - ४ पफ ४ फ े) आय + (न े- नम + म ) कर इस को घटा देओ । (पफ + ५फर) य - (२न - ३ नम) कर
उत्तर,
(१९) प - २फ + ३ ब इस को (अ + १) प + (कं - २) फ - ( ग - ३) ब इस में घटा देने से शेष क्या रहेगा ?
उत्तर,
आप + कफ गब ।
(२०)
(३ करे - ५ कम + ग ) घरे - (५ ग - ७ घ) र + (घ े + ३ घव + ५ च १ )
२ - ८३ टूस को ( +२ अ + ३२) घ
For Private and Personal Use Only
Page #44
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
. २७
गुणन । + (क-४ कग+गर) यr-(ग-५गघ+३घर) यर + (घ२-३चर)३ इस में घटा देओ। . उत्तर, (अ+ क+५कग-गर) य+ (कर-४कग+गरे-७१)गर - (ग-५गघ+४ +२ घच+५चर) यर + (७ घ+५चर) ।
३ गुणन ।
.३० रीति । गुण्य के एक २ केवल पद को गुणक के एक २ केवल पद से गुण देने से जो अलग २ गुणनफल होंगे उन का योग करो वही अभीष्ट गुणनफल है । अब यहां जो दो २ केवल पदों का गणन की पड़ता है उस में यदि उन केवल पद रूप गण्य गणकों के सिंह सनातीय हों तो उन का गुणनफल धन होता है । और विजा. तीय हों तो कृण होता है । और गुण्य गुणों के संख्यात्मक वारयोतकों का गुणनफल उन के गुणनफल का संख्यात्मक वारद्योतक है।
और गुण्य और गुणक इन में जो २ अतर होंगे वे ही सब गुणनफल में वर्णमाला के क्रम से लिखो।
____ * इस की सत्यता इस भांति स्पष्ट होती है। सोचो की +क इस को ग+घ इस से गुणना है। तो इन का गुणनफल परिभाषा से (अ+ क) (ग+ घ) यों होगा। . अब योगरीति से जाना जाता है कि (+क) (ग+ घ) यह ग (+क) और घ (+क) इन का योग है और भी ग (श्र+क) = अग+ कग और घ (+क) = अघ+ कघ ।
.( +क) (ग+घ) = ग (+क)+घ (+क) = अग+कग + अघ+ कघ इस में श्र+क इस का एक एक केवल पद ग+घ इस के एक एक केवल पद से गुणा गया है। इस से उक्त रीति की सत्यता स्पष्ट प्रकाशित होती है।
+ इस की उपत्ति यह है । 4-क और ग-घ इन का गुणनफल = (श्र-क) (ग-घ) = ग (श्र-क)- घ (श्र - क) = (अग-कग) - (अघ-कघ)
= अग-कग-अघ+कघ इस में श्र-क इस का एक एक पद ग-घ इस के एक एक पद से-अवश्य गुणा गया है। हो ऐसा (+) x (+ ग) = + अग, (+ अ) x (-घ)= - अघ,
(-क) x (+ ग) = -- कग और (- क) ४ (-घ) = + कघ । यह उपपत्र हुश्रा।
For Private and Personal Use Only
Page #45
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
न्यास । -५क
मुणन । ___ और भी जो किसी एक पद का घात गुण्य में हो और उसी पद का घात गुणक में भी रहे तो उसी पद का घात गुणनफल में भी होगा। परंतु उस घात का घातमापक गुण्य गुणकों में जो घात हैं उन के घातमापकों के योग के समान होगा। इस की युक्ति सातवें प्रक्रम से प्रकाशित होती है।
जैसा, अय४३ अय=६ अअअअअययय =६अ य । अर्थात् अय४३ अय-६+२४३५+२= ६अश्य । उदा० (१) ५ अश्य इस को ३ कय इस से गुण देओ। न्यास । अय ३कय
गुणक १५ अकयर गुणनफल । उदा. (२) -५अक इस को - अय स. से गुण देओ।
गुण्य
गुणक ५अकय गुणनफल। उदा० (३) यर इस को -२ अल इस से गुण देओ। न्यास । हयर
गुणक .. -१८ अयरल
गुणनफल । उदा० (४) ५ अय + ४ कर- ३ गल इस कोर अरल इस से गुण दे । न्यास। अथ+४कर-३गल
गुण्य
गुणक १० अयरल +८ अकरल-६ अगरल', गुणनफल । उदा० (५) अ-३ अक इस को अ-२क इस से गुण देओ।
यहां बाई ओर से गुणने को प्रारम्भ करो और क्रम से गुणाक के एक २ पद से गुण्य को गुणने से जो गुणनफल उत्पत्र होंगे. उन में
-
य
-
-
For Private and Personal Use Only
Page #46
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
गुणन ।' पहिले गुणनफल के दूसरे केवन पद के नीचे से दूसरा गुणनफल लिखो फिर उस के भी दूसरे केवन पद के नीचे से तीसरा गुणनफन्न लिखा इसी भांति हर एक गणनफल उस के पहिले गणनफल के दूसरे केवल पद के नीचे से लिखा यो लिखने से प्रायः सजातीय पदों के नीचे सजातीय पद पाते हैं उस से योग करने में बहुत श्रम नहीं होते। न्यास। अ२-३ प्रक
अ-२ क अ-३ अक = (अर-३ अक) अ __ -२ अक+६ अकरे = (अ२-३ अक) (-२क)
अ-५ अक+६ अकरे - (२-३ अक)४ (-२क) । उदा० (६) या+घर+या+
यर- यर + य++या+यर -य -य -य -यर
+AT+Ari+यर + य+या+या+र उदा० (७) +२ +३ग
अ-२क+५स अ+२ अक+३ अग -२ क-४ -६कग
+५ अग+१० कग+ १५ गरे अर-४क+अग+कग+ ५५ गरे उदा० (८) अय + गय-च
कयर-घय-छ अभय + कगय - कचयर -अस्य-गधय+घचय
-अजय-गछय+चछ अक्रय + (कग-अघ) य३-(कच+गघ+अछ) य+(च-गछ) य+चक
-
-
-
-
For Private and Personal Use Only
Page #47
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
३०
उदा० (९) अ + अ+9
- + १
* +अ+अ
www.kobatirth.org
गुणन ।
• अरे-अरे-अ
++9
४ + अ + 9
उदा० (१०) + +9
अ - १
अ + अ + अ
- * - - १
(२) ७यरल इस को ४ ३कर इस से गुण देओ ।
उत्तर,
- १
अभ्यास के लिये और उदाहरण ।
(१) ३ र ५ प्रकरे इन का ५ य२र३, ४ अथर इन का और ४ अकग इन का अलग २ गुणनफल कहो ?
:- ० कल,
उत्तर १५ करैयर - २०
यर" और २८ अ क गल ।
र ल
Acharya Shri Kailassagarsuri Gyanmandir
इस से और
२८ यर"ल* और - २४ कय ह ।
(३) ६(+) इस को - २ ( अ + य) इस से और - ५ ( - ) 2
इस को - ३ (६- १) २ इस से गुण देओ ।
उत्तर
- १२ (अ + य) ३ और १५३ (य- १) * ।
इस को
For Private and Personal Use Only
(४) ३+५८, ७क इन का ५८-०८ - ४र इन का और -- ३ घ ेर - ६ यर, - यरल इन का गुणनफल क्या होगा ? उत्तर २१ क + ३५ कर, - २० घर + २६६२ और
३ + ६यरल |
Page #48
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
गुणन । (५) ४ अय-५ कय + ग इस को ६ अय इस से और ५ यर । -७यर-४ य इस को-८ अयर इस से गुण देओ ।
उत्तर, २४ अय-३० अकय+ ४२ अगय और -४० अयर३ +५६ अय +३२ अयर।
. (६) ५ +७क, ३+४ कइन का और ३ य-रल, एयर +६रल इन का गुणनफल क्या होगा?
उत्तर, १५ अ+४१ अक + २८ करे और २७ ३ -४५ यरल - ४२ लरे।
(७) ४ अय +५कर, ४ अय-५करदन का और अ+ अक+कर, अर-अक+ कर इन का गुणनफल क्या होगा? - उत्तर, १६ अय२-२५क और अ + अक+ क ।
(८) ३ य-५ यर +7 इस को २ य--0र इस से और ५ +३ अक-क इस को २ -४ अक + <क इस से गुण देओ।
उत्तर, ६य -३१यर+३९ यर-१४ र और १० अ-१४ अक +३१ अक+३१ अकर-एक ।
(९) अ +३ अक+करे इस को अ-३ अक + क इस से और य+श्यर+३ इस को यर-२यर+ दूस से गण देओ।
उत्तर, अ-७ अक+क और य" -४ यर+३२ । (१०) य-२ यर+४ यर-३र३ इस को य+२र इस से और अ-३ अक+२७ अका-८१क इस को अ+३ अक+हकर इस से गुण देओ। ___उत्तर, य+५ यर-दर और अ६-७२९ क ।
(११) य+२ पर+8 यर' +2 इस को य -२र इस से और अ - ३ अ + - २७ अ+ ८१ इस को अ+३ इस से गुण देओ।
... उभर, घ-१६ और अ + २१३ ।
For Private and Personal Use Only
Page #49
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
३२
(१२) य' + य' + य +
से और +६+
से
गुणा देओ । उत्तर,
www.kobatirth.org
य - ६-६ + १ ओर - १८ अ + ८१ क" ।
(१४) य* + ५ यर + १०
गुणन |
+ +9 इस को यर-यर-य + १ इस कर इस को
६ अ + अक दूस
(१३) * +६१ + १८ + १ इस को अरे - ६ से और + ३ + ४+३+१ इस को य - ३ +9 इस से गुण
उत्तर,
-
य े – ३ य ेर + ३ यर' –
उत्तर
- २ घर - १ ।
-
देओ ।
अ + ३१२ – १ और -- +91
उत्तर य + ३४
+ १० र ३ + ५ घर + र' इस को इस से गुण देने से गुणनफल क्या होगा ?
a2 + ? a°C ~ ? q€r2 — € aar3 + £ a3c2 + ? a2c©
Acharya Shri Kailassagarsuri Gyanmandir
+ ू।
(94) a*+8a2+ Ca2 + 8 0 + 9 CA ÎI Q° – 802 + ca2
-
- ४य + १ इस से
गुणा देओ ।
(१०) ४ + ३ क + ६ क + १० अरे – ३ अ ेक + ३ अकर - करे इस से गुण ' - २१ अ क + ३५
---
उत्तर,
+ १८ - १ इस
+ ४८१ - ३६
(१६) १+४य + ९ + १६८३ + २५ य इस को १ - ३८ + ३ ब - य इस से
मुग देओ ।
उत्तर,
१ + य - ३६ य' + ५९८६ - २५य' ।
देओ ।
+ १५ क इस को
- १५ क ।
For Private and Personal Use Only
(१८) घ+श्य * +२+२+२+' इस को य' – २ प्रय' + २श्रय – २' + २'य- अरे इस से गुण देओ ।
उत्तर,
य१० - १० ।
Page #50
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
क + २
उत्तर,
- २
+ ६ कग + ४ कगरे + ग
www.kobatirth.org
(१९) अ + २
२ -२ क - २ ग +कर + २ कग + ग इन का गुणनफल क्या होगा ?
क- ४ प्रकग
२ अ + क* + ४ करेंग
।
गुणन |
+कर + २ कग + ग और
Acharya Shri Kailassagarsuri Gyanmandir
-
(२०) य े + ४ यर + ६ यल +६+१७ रन + १८ ल इस को य - ४ यर - ६ यल + ८ - १७ रल + १८ल इस से गुण देओ 1
उत्तर, य - ४८यरल - १३६ यरल - २०४ यरल + ६४ ₹* - र ेल' + ३२४ ल* ।
(२१) य + ३अर इस को २० + ५कर इस से और य + २ अय + ३क इस को य- -५ ग इस से गुगा देओ उत्तर, २ * + (६ अ + ५ क) घर + १५ अकर और य
1
+ (२ - ५ ग ) घर - (१० ग - ३ क य - १५ कग
*
-
(२२) य + तय + थय + द इस को यर - धय न इस से गुणा
देओ ।
उत्तर, य' + (त - ध) य* – (तध - थ + न) य
- (त े - ३ त + ३) य - त े + ३त ।
(तन + थध - द) य े - (थन + दध) य - दन ।
(२३) य* + तयरे + (त - १ ) य + (त - २) य + त - ३ इस को य-त इस से गुण देओ ।
उत्तर, य - (तर - त +१) य े - (त े - २त +२) य
३३
(२४) अ + अ + 3) य + (+१) य े + (+३) य + ( + २) य* + अ + ३) य' इस को १ - २६ + यर इस से गुण देओ ।
उत्तर अ- (अ - ३) य - (अ + ३) य + (+३) य े
(२५) य* + (+१) यश + (२ + १) य े₹२ + (३अ + १) यर + (४ अ + १) र ' इस को यर - २ घर + र े इस से
गुण देओ ।
उत्तर य + (- १) यश - (५
+१) यर' + (8
For Private and Personal Use Only
+ १) ₹* ।
Page #51
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
४
गुणन । (२६) तय- (रत+थ) यर (३ त + ३थ) यर-(४+६) रस को य+३ +३ यर' +र इस से गुण देओ।
उत्तरं, तय + (त-थ) यर - (५ त + १०५) यार' - (त+१५ थ) यर' - (४+६यर। . . (२१) य+१, य-२ और य+३ दून का गुणनफल क्या होगा?
उत्तर, य+२यर-५३-६। . (२८) +३क, +क, अ-क और अ-३ क, इन का गुणनफल क्या होगा?
उत्तर, अ - १० अक+क' । (२८) य+र, य-र और य+र इन का गुणनफल क्या होगा ?
उत्तर, य-र । .. (३०) अ+क, ग+घ, और च+ क इन का गुणनफल क्या होगा?
उत्तर, अगच + कगच + अघच + कघच + अगछ + कगछ + अघक + कघछ । (३१) प्र+क, अ+ग और अ+घ इन का गुणनफल क्या है?
उत्तर, अ + (क+ ग + घ) अ + (कग + कघ+ गघ) + कगघ । (३२) य-अ, य-क, य-ग और य-घइन का गणनफल कहो। उत्तर, य - (+क+ग+घ) यः
+ (अक+अग+ अघ+ कग+कघ+गघ) घर
-(अकग+ अकघ+ अगघ+कगघ) य + अकगघ । (३३) अ-क, अ-ग और क-ग इन का गुणनफल कहो।
उत्तर, अक-अग-अक + अग+कग-कगर । (३४) यह सिद्ध करो कि अ (क-ग)-क (अ-ग)+ ग (अ-क) = ।
For Private and Personal Use Only
Page #52
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भागहार।
(३५) यह सिद्ध करो कि (अ+कर) (अ-क) + (अर-कर) (अ+ क) +२ क = २ । ____ (३६) (य + अ) (य + क)- (य+अ) (य-क) + (य- अ) (य+क) -(य-अ) (य- क) = ४ कय इस को सिद्ध करना चाहिये ।
(३७) यह सिद्ध करो कि अरे (क-ग)-कर (प्र-ग)+ग (प्र-क)= (अ-क) (अ-ग) (क-ग)।
(३८) यह सिद्ध करो कि (अ-क) ( +ग) (क+ग)-(अ-ग) ( +क) (क+ग) + (क-ग) ( +क) ( +ग)=(अ-क) (अ-ग) (क-ग)। ___(३९) यह सिद्ध करो कि (अ-क) (य+अ+ग) (य+क+ग)- (अ-ग)(य+अ+क) (य+क+ग) + (क-ग) (य+ +क) (य+अ+ग) = (प्र-क) (अ-ग) (क-ग)।
(४०) यह सिद्ध करो कि अरे (क-ग) (य+क) (य+ग)-कर (अ-ग) (य+अ) (य+ग) +ग (अ-क) (य+अ) (य+क) = यः (अ-क) (अ-ग) (क-ग)।
४ भागहार।
३१ । भाज्य और भाजक दन के केवलपरत्व और संयक्तपदत्व से भागहार के अनेक प्रकार होते हैं।
पहिला प्रकार । जब भाज्य और भाजक दोनों केवलपद हैं। (१) रीति । भिवाडरीति से भाज्य भाजकों को लिखो और संभव हो तो उन के अडात्मक वारद्योतको में अपवर्त करो फिर यदि किसी प्रसर का कोई घात भाज्य में रहे और वही घात भाजक में भी रहे तो उस को दोनों में से छेक देओ और जो किसी एक अतर का घात भाज्य
For Private and Personal Use Only
Page #53
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
३६
भागहार ।
में हो और उस से भित्र उसी अन्तर का घात भानक में भी हो तो उन दोनो घातों को बैंक के अधिक घात जिस स्थान में होगा वहां उसी अक्षर का वह घात लिख देना जिस का घातमापक उन छेके हुए दो घातों के घातमापकों के अन्तर के समान हो * ।
www.kobatirth.org
भाज्य भाजकों के चिह्न सजातीय हों तो भजनफल धन होता है और विजातीय हों तो ऋण होता है ।
उदा० (१) १२यस इस में ३यर इस का भाग देओ ।
न्यास |
१२यर स
३८
उदा० (२) - १५ क इस में - कर इस का और २० कम इस में - ५क इस का भाग देओ ।
न्यास ।
१५ क
५२
४ अग ।
३ क
५ क
९ अकर दूसरा प्रकार | जब भाज्य संयुक्तपद और भाजक केवलपद है । (२) रीति । पहिले प्रकार से भाज्य के प्रत्येक केवलपदों में भाजक का भाग देओ ।
- ४र स ।
+ इस की युक्ति यह है
उदा० (१) १२ क- १८१६ करे इस में ६ क इस का भाग देओ ।
Acharya Shri Kailassagarsuri Gyanmandir
* इस में जो भजनफल जानने के लिये रीति कही है यह सब भाज्य भाजकों में अपवर्त करने का प्रकार है । और भाज्य भाजकों में अपवर्त करने से भजनफल में अन्तर नहीं पड़ता इस की युक्ति सातवीं प्रतक्ष बात से तुरन्त मन में बैठेगी।
+ अक + क
अक ...
और
- श्रक
: (अ) x + क)
और : ( अ ) x ( - क) = + अक ..
: ( + अ ) x + क) = + अक ..
२० कम
श्र
+ अक
- प्र
= + क, और
For Private and Personal Use Only
अक + क
G
-
क यह उपपत्र हुश्रा
1
= + क
Page #54
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भागहार।
न्यास।
१२ अंक-१८ अकमरे -- १६ अकरें -
--- =२ अ.-३कगः ६अक
-अकरे।
तीसरा प्रकार । जब भाज्य और भाजक दोनो संयुक्त पद वा केवल भाजक ही संयुक्त पद है।
(३) रीति । यहां भाज्य भाजकों को व्यक्त गणित की रीति से इस भांति लिखो कि उन दोनों में किसी एक गुणरूप अतर के घातों के घातमापक उत्तरोत्तर घटते हुए वा बढ़ते हुए रहें। यों लिखने से भाज्य भाजकों में जिन गुणरूप अक्षरों के घातों के घातमापक उत्तरोत्तर घटते हुए वा बढ़ते हुए होंगे उन अक्षरों को मुख्य अक्षर कहो । अब भाजक के पहिले केवलपद का भाज्य के पहिले केवलपद में भाग देने से जो फल आने के योग्य हो उस को भजनफल के स्थानपर लिख के उस से समय भानक को गुण के उस गुणनफल को भाज्य में घटा देओ फिर जो शेष बचे उस को भाज्य मान के फिर पर्ववत विधि करो। ऐसा वारंवार तब तक करो जब तक शेष कुछ न बचे वा जब तक भाजक के पहिले पद का भाज्य के पहिले पद में भाग देने से जो फल आने के योग्य हो उस के छेद स्थान में कोई मुख्य अतर आवे ।
भानक का भाज्य में भाग देने से जो शेष कुछ न रहे तो भजन' फल के स्थानपर जितने पद पाए होंगे वह पूरा भजनफल है। और जो
कछ शेष रहा हो तो उस को और भाजक को क्रम से अंश और छेद समझ के उन से जो एक भित्र पर बनेगा उस को भजनफल के स्थान पर जो पद हैं उन के पीछे लिख देनो यों करने से भजनफल के स्थान पर जो बनेगा सो पूरा भननफल है।
+ १९ अक+१५ करे इस में ३ अ+५क इस का
उदा० (१) ६ भाग देओ।
For Private and Personal Use Only
Page #55
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
+३क
भागहार । न्यास । ३+५क ) ६ +१८ अक+१५ करे ( २
६१+१० प्रक
एक+१५कर
अक+१५कर
+ १२६ क इस में अ+५ अक + ७ कर
उदा. (२) अ + ५५ अ इस का भाग देयो।
न्यास। अ+५अक+कर
+५५अ + १२६ (१-५अक+१८ कर +५ अक + ७ अकर -५ -७ अक+५५ अकर -५ -२५ अकर-३५ अकर
१८ अकर+९० अक १२६ १८ अकर+९० अक+१२क"
उदा० (३) अ+३य उस में अ+य इस का भाग देओ।
न्यास।
+
।
+य
अ+य) अ+३य (अ- अय+
अ+अय
-अश्य+३१२ -अय-अयर
अय+३ अयन यो
श्य
इस का भाग
उदा. (8) य+तय+दय+7 इस में य- देखो।
For Private and Personal Use Only
Page #56
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भागहार । न्यास। य-अ)य+तय+दय + न(4+(अ+त)य+ (अ+अत+द)
अ+त +द +न, य-अयर
+
(अ+त) य+दय (अ+त) य२- (अ+त य
(अ+त +द) य+न (अ+त+द)य-(अ+ त+दय)
अ+त +द +न । यहां भाज्य और शेष एकरूप हैं किन्तु भाज्य में जहां य अंतर है तहां शेष में अ अक्षर इतना हि विशेष है।
उदा० (५) यरे - यार ...६ अयर - १० यर + ३२ अयर - १२ अरेय -दर-२ अर+२१अर-५ अरे इस में य-४+ इस का भाग देखो।
न्यास। भाजक य-४ र + अ) भाज्य (लब्धि य+घर-७ अय+ +अर-५ अर ब-यर-अयर-१०पर+२अयर-१२ अय-दर-२पर+२९ अर-५ य-४यर+ श्रयः
+घर-७श्रय -१०यर+३२यर +यर
-१२पर+ अयर.
-७अय+२यर २६प्रयर-१२ प्रय -७श्रय
+२८अयर- ७ अश्य + २यर+ अयर- ५अय- +२यर
~E + प्रयर- ५ अय + अपर
-२ अर' +२ पर
-४पर+२१ अर -४ अर+ श्रर
---
- ५ अय - ५श्रय
+ २० अर-५श्रो +२०अर-५
अथवा जैसे इस उदाहरण में तीन अक्षर हैं ऐसे नहां भाज्य और भानक में तीन वा चार अक्षर हों वहां उन अत्तरों में किसी एक असर
For Private and Personal Use Only
Page #57
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भागहार । को मुख्य मान के भाज्य और भाजक में जो उस मुख्य अक्षर के और उस के घातों के अनेक सजातीय पद होंगे उन को (२७) वा (२८) वे प्रक्रम के अनुसार इकट्ठा करके लिखो। तब वैसे भाज्य में वैसे भाजक का भागहार के इसी तीसरे प्रकार के अनुसार भाग देओ।
जैसा। इसी उदाहरण में उतरीति से भाज्य और भाजक को बना के
न्यास।
भाजक य-(४र-अ)) भाज्य (लब्धिय + (३र-७ अ) य+ (२ + अर --५ ) या - (र+६) यर- (१०-३२ अर+१२ अर) य-( +२ अर-२१ अर+५) य- (४र- अ) या
+(३र-७) य- (१० -३२ अर+१२ अ) य +(३२-७ अ) य- (१२२-३१ अर+ ७ अर) य
+ (२२+ अर-५ अर) य-(८२+२ अर' -२१ अर+५श्र) + (२ + पर - ५ अ) य - ( + २ अर'.- २१ अर+ ५ श्र)
इस प्रकार से यहां लब्धि य+ (३२-७ अ) य + (RT +अर-५ अर) यह आई है इस में कोष्ठ को मिटा देने से य+३यर-अय+२+अर-५अ यही अभीष्ट लब्धि है।
उदा० (६) १ इस में १- य इस का भाग देओ।
म्यास । १-य) १ (१+य+य+य+ इत्यादि ।
य-यर
या-य
य--२४
य इत्यादि।
For Private and Personal Use Only
Page #58
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भागहार । यहां य का घात शेष रहता जाता है और वह शेष नौथा होगा वही संख्या वहां य के घात के घातमापक की रहती है। और यहां भजनफल के स्थान पर अनन्त केवलपद आते हैं। इस लिये यहां भागहार को चाहे तब तक बढाते हैं और भी यहां के भननफल को अनन्त श्रेढी कहते हैं और उस को =१+य+या+य + ......यों लिखते हैं।
अभ्यास के लिये और, उदाहरण । (१) १५ अकग दस में ३ अक इस का और - ७२+१४ यर --२१यर' इस में -७यर इस का भाग देहो।
उत्तर, ५ अगर और य-२यर+३यर। . (२) १० यर इस में - २यर इस का और -२८ अन्य इस में - अय इस का भाग देओ।
उत्तर, -५यर और ४ अयः । (३) १५ (अ+क) य° इस में ५(अ+क) य इस का और -५ अंक (य-र) इस में -५क (य - र) इस का भाग देओ।
उत्तर, ३(अ+क) और अर (य-र)३ ॥ __(8) ३५ अकर-२१ अरकर + १४ अक इस में ७ अकर इस का और -३२यर +२० यर -१६ य +२८ या इस में -४यर इस का भाग देना।
उत्तर, ५अर-३ अक+२कर और प्या-५३+४ यर-७३। (५) ६अर-अक-३५ कर इस में ३+७क इस का और ५६५२-५ अय+३६ अरे इस में ७५-४ अ इस का भाग देओ।
उत्तर, २-५क और व्य-६अ। (६) १२ य+२३ यर+ इस में 8 य+र दूस का और १५य -- २३ य-२८ या इस में ३यर-७ यर इस का भाग देओ।
. उत्तर, ३+५र और ५य+४ या ।
For Private and Personal Use Only
Page #59
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भागहार । (७) अर-कर इस में प्र-क इस का और य+र इस में य+र इस का भाग देओ।
उत्तर, अ+क और य-यर+र। () २०३+१३ अक-२९ अकर+६ कर इस में ४ अ-३ क इस का और २४ य+२५ य +रयर + ४५र इस में ३य+५र दूस का भाग देयो।
उत्तर, ५ +७ अक-२कर और य-५ यर +हर। () य-र इस में य-र इस का और य-१६ या +6 इस में य+५+३ इस का भाग देओ।।
उत्तर, य+यर+यर +र और य-५ +३ । (१०) य-३य + य+५५२-२० य+२८ इस में य२-४ इस का और य+य+१ दूस में य-३+6 इस का भाग देओ।
उत्तर, य-३ य+५य-७ और य२+३य+ । (११) ३० +अश्य-३१ अरे+१९ अय३-५५° इस में ५अर-३ अय+यर इस का और ६य +३९ य +श्य + १०० यर +१३२ इस में ३य+यर + १३२ इस का भाग देओ।
उत्सर, ६ +४ अय-५य और रय+७यर+र। (१२) अ+६४ क इसमें अ+४ अक+कर दूस का और ८९य+४अ इस मैं हय२-६अय+२अ इस का भाग देगा।
उत्तर, अरे-४ अक+८कर और य+६अय+२ अरे । (१३) ६२-२ य-३१ य+३३२-७ इस में ३३+५य-७ दूस का पार ३य-११ य +३३यर-२" इस में य२-५यर+9 दस का भाग देओ।
उत्तर, श्य-४य+१ और ३य+४ यर-र । (१४) अ+ + + +१ इस में अ+ + + +१ इस का और य-र इस में यर- इस का भाग देओ।
उत्तर, अ-अ+ -+१और य+या+t"
For Private and Personal Use Only
Page #60
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भागहार ।
४३ (१५) अ-३ अक+३ अ -क इस में अ+ क+३ अ + करे इस का पोर १५ य°३५ १६ + २१ + १ दूस में य+३ +३ +१ इस का भाग देओ।
उत्तर, अ-३ अक+३ प्रकर-करे, और १५ य-१० यः +६यर-३य+१।
(१६) १६ य: + १६ यार-५८ य +३९ यर-४१ यर + १४ र दूस में २ +३ यर - इस का और य - १६ यर - १६ यार +र इस मैं य-५ यर +7 इस का भाग देओ।
उत्तर, य-४ यर+श्यर-२ और य+५ यर+५ यर+र।
(१७) ५५ य: - १४४ य + १ इस में य-३य+ १ इस का और ३० -१३ य+१ इस में ३३++१ इस का भाग देओ।
उत्सर, ५५ य + २१ + य+३+१और १० य - ११ य +४ य+यर-२ +१।
(१८) य-५ +३+२ इस से किस को गुण देवे तो गुणनफल ४७५ -३५५७३+२४११ य+३२ यह होगा?
उत्तर, ४७५ य -- १८२ + ७६ -२४ य+१६ ।
(१९) स्य+cur-CART-९१° इस में ३ य-८यर +१२यर२-१२ यर+यर -३र इस का भाग देओ।
उत्तर, ३ य+१२यर+१२ यर+८यर +३२५ ।
(२०) जिन गुण्य गुणकों का गुणनफल १६ अ + १५ अय- १५ अय -१६ ३९० यह है उन में जो गुणक ४-अय+२ अय+२ अश्या -अय + ४य यह हो तो गुण्य क्या होगा?
उत्तर, ४ +अय+२अध्य-अय-अय-४ य ।
For Private and Personal Use Only
Page #61
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
४४
. भागहार ।
(२१) १-२२० अ+५९४ अ५०-५४० अ१५ + १६५ अ१२ इस में १-४ +६२-४ अ + इस का भाग देओ।
उत्तर, १+४ +१० +२० अ + ३५ +५६ अ +८४ +१२० + १६५ ।
ग-अगरे
(२२) अ + अक-अकर - क + अग+२ अक्रग+ +कग-ग इस में अ-क+ग इसका भाग देओ।
__ उत्सर, अ+ क+कर- गरे ।
३+२७ ल+१८ यरल इस में य-२+३ ल इस का
(२३) य- भाग देओ।
उत्तर,
य+२यर-३यल+४
+६रल +ल'।
(२४) अ-८ करे-४९० ग+ १७ अग+१६ करेंग+ १८२ कगर इस में अ-२क+ग इस का भाग देओ।
उत्तर, +२ अक+१० अग+ क+६कग-७० गरे ।
(२५) य+यर+१रयर+ -१ इस में किस का भाग देने से लाब्ध य+२२-१ यह आवेगी?
उत्तर, य+४यर+8 +य+र+१॥
(२६) १६य - ८१+१०८रल-५४रल+१रल-ल इस में २५-३र+ल इस का भाग देओ।
उत्तर, य+१२ यर-४यल+१८यर-१२ यरल+रयलर +२७२-२७रल+रलर-ल।
(२७) अ +३ अक+३ अग+३अक+६अकग+३ अगर + कर +३ +३ कग+ग+१स में अ+क+ग+ १ इस का भाग देओ।
उत्तर, अ+२ अक+२ अग+क+२ कग+गरे--अ-क --ग+91
For Private and Personal Use Only
Page #62
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
भागहार ।
४५
में
(३८) य े + (५अ + ४ त) य े + (२० अत + 9क) य + २८कत इस य+४त इस का और य + (मप) य + (न-मप + क) य + (मक- नप) य + नक इस में य े - पय + क इस का भाग देओ । उत्तर, य+५+ ७क और य + मय + न ।
(२९) 2 + अ + २ + (५८) य े + (४ अ - ८) य + ३ - इस में य + य + ३इस का भाग देओ ।
+ (+क) य+अ
(३३) - (२
+ (२अ + २१९) य
का भाग देओ ।
उत्तर,
उत्तर, 2 + (- १) य + (-२) य + अ - ३ | (३०) यह + (- १) यर - (५ + १) घर' + (४+१) र ६ इस में थ - २यर + र इस का भाग देओ ।
* + (+१) घर + (२+१) २२ + (३+१) यर
उत्तर, + (४+१) ₹*
(३१) अ - (क' - ३ में+कय + गय इस का भाग देओ ।
उत्तर, - कय + (क) य े - (करे - २ कग) यरे । (३२) (+४क) य - ( + ५क) य - (क) य + अ य - २ + १ इस का भाग देओ ।
इस में
उत्तर,
(अ + ४ क) य + (+३क) य + ( + २क) घर
Acharya Shri Kailassagarsuri Gyanmandir
-
+ ग ) - (करेग - २ कग) य इस
- ५) य + (- २) य े - ( + १२४) य
- ( + ९८) ६१° इस में १ - ३८ + ३८२ - य इस
+ (अ+५) य + (+१३) य े + (+२४) य
+ (+३८) य + (+५५) य + अ + ७५) य + अ + ८) य
(४) य१०- (२ – २क) - (२
कर - २घ)
- (२ - २कघ + ग ) * - (२ - घरे ) - १ इस में य२ - आय
+ कय
गय + घय - १ इस का भाग देओ ।
उत्तर,
-
+ अ + कय े + गय े + घय + १ ।
For Private and Personal Use Only
Page #63
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रध
घातक्रिया। ' (३५ यह सिद्ध करना चाहिये कि १+२य+यर
=१+४य+ १-२य+यर + य
या+१२य+१६य + ....अनन्त । १+ नय+यर
+ (न+२) य+२(न+२)य+३(न+२) य....और
१-नय+यर
+ (न-३
ITE (न'-५) य+ (न-२न)य +१)य + इत्यादि ।
५ घातक्रिया। ३२ । जिस क्रिया से उद्दिष्ट* पद का अभीष्ट घात बनता है उस को घातक्रिया कहते हैं।
रोति । एकरूप गुण्यगुणकरूप पदों का गुणनफल घात कहलाता है। इस लिये वह गुणनकर्म से बनता है।
उदा० (१) अ इस का द्विघात अथवा वर्ग = अ अ = पर अइसका त्रिघात अथवा घन= axax=अरे,
- चतुर्घात = xaxax , इत्यादि । और -अ दस का वर्ग =(-) (-अ) =अर,
......... घन = (-) (-) (-)=-अरे, ___ ...... चतुर्घात = (-) (-) (-) (-अ)=अ', पञ्चधात = (-) (-) (-) (-) (-अ)=-अ, ० । इस से यह स्पष्ट है कि धन पद का कोर परा घात धन हि होता है और ऋण पद का पूरा घात घातमापक के समत्व विषमत्व के अनु.सार धन वा मृण होता है अर्थात घातमापक सम हो तो धन होता है और विषम हो तो ऋण होता है। * उशिष्ट अर्थात् मन में लिया हुआ।
For Private and Personal Use Only
Page #64
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
-
घातक्रिया।
४७ उदा० (२) अ+ क इस के वर्ग, धन इत्यादि कुछ घात करो। न्यास। अ+क
अ +क अर+अक
+ क+कर ( +क)२% अ+२ अक+कर
अ + क अ+२ + प्रकर
+ अक+२अकर+करे (अ+क)३ = +३ अक+३अक+करे
अ+क अ+३ अक+३ अकर+ अकर
+ अक+३ अकर+अक+क' (अ+क) = अ +8 अक+६अकर+8 अक+क
अ+क
+ 8 अक+ कर+8 अकन अक:
+ अक+ ४ अक+६अक+४ अक + कर (+क) = अ +५ अक+१० अकर+१० अक+५अक+क
इस से यह स्पष्ट है कि अ+ क ऐसे दियुक्यद के वर्गादिघातों में पहिले पद में मूल के पहिले पद का घात रहता है और उस का घातमापक क्रम से दो, तीन इत्यादि होता है । और उस से उत्तरोत्तर पदों में जो मूल के पहिले पद के घात हैं उन में हर एक के घात. मापक की संख्या में एक २ न्यन होता जाता है । और घातों के दूसरे पद में मूल के दूसरे पद के घात का घातमापक १ होता है और उस से उत्तरोत्तर पदों में जो मूल के दूसरे पद के घात हैं उन में हर एक के घासमापक की संख्या में एक २ अधिक होता जाता है और घातों के दूसरे पद का वारद्योतक घातमापक के समान होता है।
:: (अ+क)न = अन+नअन-क+न, अन-रक+न, अन-क+दु०॥
For Private and Personal Use Only
Page #65
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
४८
घातक्रिया |
यहां न, न, इत्यादि घात के तीसरे आदि पदों के वारव्योतक अभी स्पष्ट नहीं
हुए 1
उदा० (३) अ + क + ग इस का वर्ग और धन क्या है?
मूल अ + क + ग
=
अ + क + ग
वर्ग
=
www.kobatirth.org
+
क + ग
+ अ +कर + कग
+
+ अ
+ ग +करा+ग
+ २ क +२+कर + २ कग + गरे
अ +
क+ग
Acharya Shri Kailassagarsuri Gyanmandir
+ २
+कर + २ कग + ग
+ २ क
+ २ क +करे+करेग + कग + अ + २
कग +२+करे+क े+गरे
घन = अ + ३ क + ३ ग + ३ क + ६ अकग + ३ अ + करे + ३ क + ३ कग + गरे ।
I
२
वा, अ + क+ग इस को अ + (क+ग) यो द्वियुक्पद मान के (अ + क + ग ) २ = { अ + (क+ग) } =अ+२ (क + ग) + (क + ग) + २ क + २ ग +कर + २ कग + गरे ।
और (अ + क+ग) = { + (क+ग) } +३
(क+ग) + (क+ग) = + ३ क + ३ अ + ३ क + ६ क + ३ग +करे+३+३ कग + गरे ये वर्ग और वैसे हि हैं जैसे पहिले सिद्ध हुए
हैं
संयुक्त पद का वर्ग करने का दूसरा प्रकार ।
३=३ + ३ २ (क + ग )
For Private and Personal Use Only
घन
३३ । जिस संयुक्त पद का वर्ग करना हो उस के पहिले केवलपद का वर्ग और दूने उस पहिले केवलपद से द्वितीय आदि पदों को गुणने से जो गुणफल होंगे उन को लिखो, फिर दूसरे केवलपद का वर्ग और दूने उस दूसरे केवलपद से तृतीयादि पदों को गुणने से जो
Page #66
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
घातक्रिया |
४९
गुणनफल होंगे उन को लिखो यो अन्त तक करने से जो बनेगा सा
※
उस संयुक्तपद का वर्ग है
उदा० (१) (अ + ऋ + ३ग)=' + अ + अ + 8 क
+ १२ कग + ९ गरे ।
उदा० (२) (यर + ३
+ र े - ६ रल + १० र + ९ ल े
उत्तर,
+ १५ * + २०
www.kobatirth.org
321° (3) (¤2+R # ~ Q)3 — #* + 8 m2 − 8 m2 + 8 =2
+ ४ = अ + ४ अ - ८ + ४ ।
अभ्याम के लिये और उदाहरण ।
(१) ३ अय इस का वर्ग, घन और चतुर्धात क्या है ?
उत्तर, ९, २० र ८१ ।
*
1
इसी भांति (क+ ग+घ +
- ५) २ = य े - २यर + ६ थल
३० लव + २५ वरे ।
फिर (ग + घ...
इत्या०
अब उत्थापन से
(२) - ५ यरल इस का वर्ग, घन और चतुर्घति क्या है ? उत्तर, २५८४ – १२५ यल और ६२५ यर'ल१२ । (३) अ + २क इस का वर्ग और अ - ४य इस का घन क्या है ? उत्तर, अ + ४ क +४ क और १२२+४८०२ - ६४ य ।
(४) अ + २ + १ इस का वर्ग और धन क्या है ? * + ४ ३ + ६ अ + 8 + १ और ६+६ +१५+६+१।
•गा)
, ण)' = {ग + (घ + ' ) }
Acharya Shri Kailassagarsuri Gyanmandir
५.
इस
की युक्ति यह है। मानो कि, श्र + क + ग + घ++ या इस का वर्ग करना है तब (श्र+क+ग+••ण) = अ + ( क + ग + घ + ... ण) } २
१२
= अ + २ (क + + + सा) + (क+ग+घ+...) र {क + ( ग + घ... या) २
= क*+ श्क (ग+द्य+ण) + ( ग + ध + ... I)2 २=' + ग (घ+... ..ख) + (घ+...)
इत्या०
इत्या०
(अ + + + +
+२
+ २क (ग + घ+या) + ग +२ (ध + उपपत्ति स्पष्ट होती है ।
--
१० यव
For Private and Personal Use Only
--
दन
(क + ग + +
शा) + कर या) २ + इत्या० । इस से उक्त रीति की
Page #67
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
वर्ग
५०
घातक्रिया |
(५) अ + २ क- २कर इस का और य े +8 पर - ८२ इस का
क्या है
?
- ६४ यर + ६४ ₹४ ।
उत्तर, अ + ४ क ८ क + ४ क और य + यर
www.kobatirth.org
(६) २+६ - इस का वर्ग और+क कर इस
का घन क्या है ?
उत्तर,
६४ + २
---
उत्तर,
अ + ३ क - ५ क + ३ क क
(७) य' + २ यर - ४१२ इस का और 8 अ + ६ अक का घन कहो ।
Acharya Shri Kailassagarsuri Gyanmandir
४ य४ + २४ घरे - १०८ + ८१* और
+ ६ -४० ३ + क- १०८० क + १४५८
F
क
६ यर' - ६४ ₹६ और
-
-
कर दूस
७३९ ।
.().
२ क २ कर + करे इस का और यरे + ४ घर
-
इस का वर्ग कहो ।
अ - ४ अ क + १०
उत्तर, + - ८० ३ + १२८ यर + ६४ १६ ।
(९) ३४ ४ ८ + ४ २
उत्तर,
५७६-३८४
- ३२ + १२ – ४ अ + १ ।
For Private and Personal Use Only
करे - ४ क + क और
+ १ इस का वर्ग क्या होगा ?
+ २५६ - १६० अ + ०६४
(१०) य + २य े + ८यर - १६ १३ इस का वर्ग क्या होगा ?
उत्तर,
+ ४ + २० २ - ३५६ यर + २५६ रष ।
(११) य +य े+थ - १ इस का घन क्या है ?
उत्तर,
+ ३ + ६ + ४६ - ६
(१३) य' + श्यय - २१२ + ४ यर + ४१* इस का वर्ग क्या है ?
उत्तर,
+ ४ यर + ३८ * + ३२ यर + १६१ ।
- २३+३८ - १
Page #68
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
घातक्रिया
-
(१३) १ – इस का चतुर्घात और पञ्चघात क्या है ?
उत्तर,
- १० + ५४ -
www.kobatirth.org
१- ४ + ६ २४ ३+ और १
*
(१४) य + २
उत्तर,
य* + 8
+ (१६ + ८ कर) ६२ - २४ काय + १६ गरे ।
(१६) यह सिद्ध करो कि
– ३ क + ४ग इस का वर्ग क्या है ?
+ (४-६ क) य* – (१२
(अ-क-ग) र + क (
1
(१५) यह सिद्ध करो कि
(यं + ३) * – (य + T) 2 + (य - T ) 2 - (य - ३१) २ = ८ यर ।
-
(१७) यह सिद्ध करो कि
- (अ-क-ग) ( - क + ग) ( + क - ग)
(२०) यह सिद्ध करो कि
Acharya Shri Kailassagarsuri Gyanmandir
= १२ यरल (य +र+ल) ।
क +ग) + ग ( + क - ग) र
(१०) यह सिद्ध करो कि
( + + ग) ३+३+करे+गरे
− { (1 + ☎)2 + (I + 1)2 + (F+1)2 } = § ØEN | (१९) यह सिद्ध करो कि
( + क+ग) + ( + क - ग) ३ + (-क+ग) +
१२ (कर + गरे) = ४ रे ।
(२१) यह सिद्ध करो कि
(अ° + १)® (क े + १)२ - ४ ) = { ( - १) (कर - १) - ४ क } २ 1
५ +१०
= ४ ऋग ।
( + क + ग + घ) + (- क ग + घ) + (- क + ग -घ) र
+ अ + क ग -घ) २ = ४ ( + क े + ग + घ) ।
(क
- ६ ग) य
(य + र +ल)*+ य* + r* + ल* - {(य+र) *+ (थ + ल)*+ (र + ल)* }
For Private and Personal Use Only
५१
-
- १) + क (चर – १) } २
- क - ग ) *
Page #69
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
मूलकिया ।
६ मलक्रिया । .३४। जिस कर्म से उद्दिष्ट पद का अभीष्टमूल निकालते हैं उस को मूलक्रिया कहते हैं । यह घातक्रिया के उलटी है । इस लिये यदि बीजात्मक केवलपद का वर्गाविमल निकालना हो तो वह पद किस का धादि धात है? यो वर्गादि घात के खोजने से उस पद के वर्गादिमूल का तुरंत बोध होगा।
उदा० (१) य इस का धर्गमल + य और - य है क्योंकि+य और -य इन दोनों का भी वर्ग+ य यही होता है। इस लिये या इस के बर्गमल कोय यों लिखते हैं। य इस का अर्थ धनात्मक या सणात्मक य ।
उदा० (२) - अकर इस का धनमल - अक यह है क्यों कि-अक इस का घन - अक यही होता है।
उदा० (३) अ (य--) दस का वर्गमूल =+ अ (य-र), (य+ १)२ (र--१) रस का वर्गमल = * (य+ १) (र- १२ और - (+ल) इस का नमल =-घ(+ल)।
३५ । बीजात्मक संयुक्तपद का वर्गमूल निकालने की रीति का खोज । यह उद्दिष्ट संयुक्तपद के वर्ग में जो पद होगे उन से सिद्ध होता है।
सोचो कि अ+ क यह एक उद्दिष्ट पद है । इस का वर्ग अ + २ अक+कर यह है । इस में अ इस के घात के घातमापक उत्तरोत्तर घटते हुए हैं। अब इस के पहिले पद अ, का वर्गमूल अमल का पहिला पद है। इस का वर्ग उद्दिष्ट वर्ग में घटा के शेष २ अ + क के पहिले पद में मूल के दूने पहिले पन का भाग देखने से क फल आने के योग्य है । यह मल का दूसरा पद है। अब उस दूसरे पद को मल के दूने पहिले पद में नोड़ देने से जो बनेगा उस को उसी दूसरे पद से गण देने से (२ +क)क अथात अक+करे यह बनता है। इस को २ अक+कर शेष में घटा देने से अवशिष्ट कुछ नहीं
For Private and Personal Use Only
Page #70
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
मूलनिया । रहता। और यदि + क + ग यह उद्दिष्ट त्रियुक्पद हो तो इस का वर्ग (A+ क) +२ (अ+ 2) ग+ग यह होता है। यहाँ पहिले स्थान में (अ+ क) इस का धर्ग है इस से ऊपर की युक्ति से अं+ क ये दो पर जात होंगे। फिर भी अपर ही की युक्ति से तीसरा भी पवें जातं होगा । केवल के स्थान में + को और क के स्थान में ग को मानो इतना हि विशेष है। इसी भांति चतुर्युम्पद आदिओं के धी में भी पदों की रचना नानो। इस से यह वर्गमल निकालने की रीतिः उत्पन्न होती है। . बीजात्मक संयुक्तपद का वर्गमूल निकालने की रीति.।
जिस पद का वर्गमल निकालना है वह उद्विष्ट वर्ग: कहानावे उस को इस भांति लिखा कि जिस में किसी एक अक्षर के घासों के घातमापक उत्तरोत्तर घटते हुए वा बढ़ते हुए रहे। फिर पहिले पद के वर्गमल को भजनफल के स्थान में लिख के उस के. वर्ग: का उद्दिष्टबर्ग में घटा देओ फिर भाजक्र के लिये उस पहिले पद के वर्गमल को दूना करके भाजकस्थान में लिख दे उस का शेष के पहिले पद में भाग देखने से जो फल पाने के योग्य हो उस को भजनफल के स्थान के पद में और भाजक में भी जोड़ देओ। फिर इस जोड़े हुए भाजक को उसी फल से गुण के गुणनफल को शेष में घटा देओ। ऐसा बार २. अन्त तक करो । यो करने से जितने भजनफल के स्थान में पद पावें. सब मिलके वर्गमूल है। उदा० (१) अ+६ अक +कर इस का वर्गमल क्या है ?
न्यास। अ+ ६ अक+रक(+३क
२+३क) +६ अंक +९ कर
+६ +कर
For Private and Personal Use Only
Page #71
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
मूलक्रिया । ___ यहां अ + ३ क यह वर्गमूल आया और जो पहिले पद का वर्गमल - अलेके वर्गमूल निकालो तो-अ-३ क यह आवेगा। यह अ+३क इस के धनर्णत्व को पलट देने से भी बनता है । यों किसी पद के वर्गमूल का धनर्णत्व व्यत्यास करने से दूसरा वर्गमूल बनता है। यह सर्वत्र जानो। भास्कराचार्यजी ने भी कहा है कि स्वमले धनणे । उदा० (२) य - १२ अ + ४ अपर इस का वर्गमल क्या है? न्यास। य - १२ अय + ४ अश्य (३३-२ अय
त्य
६य- २ अय)
- १२ अय + ४ अयर --१२ अयः + ४ अयर
उदा० (३)
न्यास।
य+ ४ य-८ य+8 इस का वर्गमल क्या है? य+४ य-य+४ (य+२ य-२ यह वर्गमल है।
२य+रय) + ४ य-य+४
___ +४ य + ४ य २य+४ य-२) -४ य२-८३+४
-४यर-८य+8
उदा. (४) अय' +२ अकय+ (२ अग+कर) य+२ कगय + गरे इस का वर्गमूल क्या है? न्यास । अ +२ अकया+(२ अग+कर) य+रकगय+ग२(अय+कय+ग
अय २अय+कय)+अकया+(२ अग+कर)य+रकगय+गर
+अकय+कायर अय+ कय+ग) अगय+२ गय+गर
२ अगय+ रकगय + गरे
For Private and Personal Use Only
Page #72
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
५५
मक्रिया । उदा० (५) + य इस का वर्गमूल क्या है ? न्यास। + य (३+य-य+२ य - इत्यादि अनन्त ।
१+य) +य
+4+यर १+२ य-य२) -घर
-यर-२य+ १+२य- २५+२य)+२य-य
+२ +४ -४ +४य __-५य +8 य-
४ ० अ० । यहां वर्गमूल में अनन्त पद आते हैं। इस लिये इस को अनन्सश्रेठी कहते हैं। और इस को
V+य=+य-य+२ - १० प्र०यों लिखते हैं। और इस में यदि य का मान थोड़ा माना जाये तो दशमलयों में + य. इस का आसत्र वर्गमूल लेने के लिये यह श्रेठी बहुत काम की है। यहां य के कल्पित घोड़े मान से श्रेठी के दो या तीन पदों का उत्थापन करने से आसत्र मूल बनता है।
जेसा Vi+य, वा,V.५+ य =३+ -य+२य - ० अ० रस में यदि य = =.०१ मानो तो .२५+..१ वा V.RE =
+..१-(.०१)२ + २ (.०१)३ प्रासन =.५ + .०१-.०००१२.०००००२ -.५०९८०२ पासच।
अभ्यास के लिये और उदाहरण । (१) १९६ अय" इस का और (अ-क)गर इस का वर्गमूल क्या है?
उत्तर, १४ अयर पार । (-क)ग। (२) ६४ या इस का और - (य+र) (ल-a) इस का घनमल क्या है? ___ उत्तर, ४यर और - (य+र) (ल-ब)।
For Private and Personal Use Only
Page #73
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
मूलक्रिया । . ..(३) १६ त थ द इस का और ८१ (क-ग) इस का चतुर्शतमूल क्या है?
उत्तर, रतथद' और +३ अ (क-ग)। (४) -३२ अतय० इस का और (अ+ य२)१० ( -1)१५ इस का पञ्चधातमल क्या है?
_ उत्तर, २ अत य और (अर + यः)२ (-यर) ।
(५) ५५ प फरव१८ इस का और ६४ (अ-क) (अ-ग)२७ (क-म)४२ दूस का षड्यातमल क्या है?
उत्तर, ५ पफ ब और + २(अ-क) (अ-ग) (क - ग) । (६) अ + १४ अ+ ४९ इस का और हय-३० य + २५ इस का. वर्ग: मूल क्या है?
उत्तर, अ+७ और ३५-५। ___ (७) हय--१२ यर ४१ इस का और ४ अ -२० +२ इस का वर्गमल क्या है?
उत्तर, ३५-२१ और २१-५ । - (८) अक+६ अक+इसका और ४ अयर- १२ अकयर +ear इस का वर्गमल क्या है? ___ उत्तर, अक+३ और २ अय-३ कर।
(द) अ-१० अ + २५ यरस का और अय-२ अयर + रस का बर्गमन क्या है?
उत्तर, अ-५ य और अय-र। (१०) ८१ अ + २९ अ + २१६ अ + E अय' + १६ य" इस का वर्गमल कहो।
उत्तर, अ+ १२ अय+ ४ यरे । (११) -२ अ + ३ २ -२ अ +4 इस का और . ४ य-८ + ४ य+प इस का वर्गमूल क्या है ?
उत्तर, अ-य+ बार २ यर-२५-३
For Private and Personal Use Only
Page #74
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
मूलक्रिया । - (१२) अ.-६ - +५४ अ+८१ स का और अई- ४ अर +१० अ३-४ +१ इस का वर्गमल क्या है?
उत्सर, अरे-३ - और अ - २ -२ +१॥ (१३) ४ अ +४० अय-५०० अय + ६२५ य यह किस का धर्म है।
उत्तर, अ+ १० अय-२५ यर । (१४) किस का वर्ग करें तो ८१ + २१६ -१९२ यर + ६४ र यह होगा?
उत्तर, य+१२यर-कर। (१५) ६४ वय - ३२० अघि + १००० अय + ६२५ दूस का वर्गमल कहो।
उत्तर, अय-२० अय-२५ । (१६) १-२ +३.१- ४ अ + ३ अ - २ अ + अ इस का और य-४ य + ४२° इस का वगैमल क्या है?
उत्तर, १- +अर-अ और य - २२२ । (१७) ४य +८ + ५य - २ य+ १ इस का और य+२यल +५यल२-८ यल' + ४ ल इस का वर्गमल क्या है?
उत्तर, रय+२ यर-य+१और य+यरल +२ यल-२ ल । (१८) य-४ य + १०५ - १५य + ३६ य+ ३६ इस का और +२ अकरे +२ अगः + क +२कग + गइस का वर्गमल क्या है?
उत्सर, य-२ +३य+६और अ+कर+गरे । (१९) किस का वर्ग १६ य-४० यर + २५ +२४ य-३०र+
उत्सर, ४५-५+३। (२०) १६ - ३२ अक+२८ अक* -- 8 अ +क इसका वर्गमूल क्या है?
उत्तर, ४ -४ अक-२ कर -२ अक+क।
For Private and Personal Use Only
Page #75
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
५८
मल किया । (२१) ६५६AT +८४८यर' + सदस्य र +९६ यर +१६ इस का वर्गमूल कहो।
उत्तर, १३ +५४.यर-१८ यार + १२ यर + ४ । (२२) अ-२ अकय + (क+२ अग) य२-२ कगय + गय' इस का वर्गमूल क्या है?
__ उत्तर, अ-कय+ गय ।।
(२३) य+ 1+ (२ -६४) य + (अ+६४) य-१६ अय+अर इस का वर्गमूल क्या है ? ___उत्सर, य+ ४ य-८ य + अ।
(२४) य+कय + (कर+रंग) 2 + (२कग+२ घ) यरे + (२कघ+ग) +२गघय+घदूस का वर्गमल क्या है?
उत्सर, य+कय+गय+घ। (२५) (य+५य- २) (य+ य - ८) + (२ य + ) इस का वर्गमूल क्या है?
उसर, य+३ य-५। (E) (५ यर-२ - १)२- (य- य+३) (२ य' + ५-५) इस का धनमल क्या है?
उत्तर, ३३२-७य+४। (२७) (१२ +३४ य+१०) + (५ यर - १४ य-२४) इस का वर्गमल कहो।
उत्तर, १३ य+२६ य+२६ । (२८) य (य+अ) (य+२अ) (य+ ३ अ)+अ इस का वर्गमल क्या है?
उत्तर, य+३अय + अरे। . (२९) १-८या इस का वर्गमल क्या है?
उत्सर, १-४२-८ -३२ -१६० - इत्यादि अनन्तः।
For Private and Personal Use Only
Page #76
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
५
. मलक्रिया । (३०) १+ ४ अय - ४ क्या इस का वर्गमूल क्या है ?
उत्तर, १+२ अय - २ (अ+ क) य+ ४ (अ + अक) यरे - इत्यादि अनन्त ।
३६ । बीजात्मक संयुक्तपद का कोड मूल निकालने का प्रकार ।
जब कि (अ+क)न = अन + न अन-क + .... तो इस पर से जाना जाता है कि उद्दिष्टघात को सुधार के लिखने से अर्थात् उस में किसी एक अक्षर के घातों के घातमापक उत्तरोत्तर घटते वा बढ़ते हुए रहें यों लिखने से अभीष्टमल के मलमापक का द्योतक न अतर मान के नो उद्दिष्ट घात के पहिले पद का नघातमूल आवे वह अभीष्टमूल का पहिला पद है । उस के नघात को समय उद्दिष्ट घात में घटा देने से जो शेष बचेगा उस के पहिले पद में मूल के पहिले पद के (न- १) घात को न से गुण के उस गुणनफल का भाग देने से अभीष्टमल का दूसरा पद मिलता है। फिर मल के ये दो पद मिल के जो एक द्वियु. क्पद बनेगा उस को अभीष्टमल का पहिला पद समझ के फिर पर्ववत् क्रिया करने से अभीष्टमल के सब पद स्पष्ट हो जायेंगे।
उदा० (१) य+६५-४० य +९६ य-६४ दस का घनमल क्या है ?
न्यास । य+६य -४० य+६६ य-६४ (A+२य-8।
३ य) +६य
य+६ +१२य+८ = (य+स्य)३ ३य') - १२य
य+६३५-४० य +९६ य-६४ = (य+२य-४)३
उदा० (२) य+ १२य + ४२ य--१८९५+३७८ य२-३२४ य + ८१ इस का चतुर्यातमूल क्या है?
For Private and Personal Use Only
Page #77
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
मूल क्रिया ।
न्यास । थ5+१२थ°+४३६१८९६ + ३७८६ ३२४८+८१ (२+३-३ ।
य
४. य) +१२८
४य ) - १२८
a5+13a3+48a€+¢%=a*+59 a*= (q2 + 3 a)*
www.kobatirth.org
य+१२+४२८१८+३७८६२ - ३२४६+८१ = (य' +३८-३) ४:
अथवा जब कि वर्गमूल का वर्गमूल चतुर्घातमूल होता है इस लिये जिस बहुयुक्पद का चतुघातमूल जानना हो उस का पहिले (३५) वे प्रक्रम से वर्गमूल जान के फिर उस वर्गमूल का भी वर्गमूल जानो वह चतुर्घातमूल होगा ।
15
इस लिये पहिले वर्गमूल जानने के लिये न्यास |
२* + ६६३) + ९२+४२
+ १२ + ३६
( + ६ + ३-१८+६ + १२ + ४२ - ९८६ + ३७८२ - ३२४ य + ८९
य
२य१ + १२६३ + ३)
६
१८६ य
६ ६ + ३६ य + य
-
२८* +१२३ + ६ -१८)- ३६ य
१६६
३६. य - २१६ य २६ + १३ + ६३६ + 8 )
२८+६य - ३)
-
२य' + ३य) + ६य' + ३८°
+ ६ य३ + य
Acharya Shri Kailassagarsuri Gyanmandir
फिर इस वर्गमूल का भी वर्गमूल लेने के लिये म्यास ।
य* + ६ ८३ + ३ य े – १८+ ९ (य े + ३६-३
य
९०८ + ३२४ य
+ १८ य + १०८ य े + ५४ २ - ३२४य +८० + १८ + १०८ + ५४१-३२४८ + ८०
- ६ य े - १८ ६१६
+
+ ३७८ य
+ c
For Private and Personal Use Only
Page #78
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
उत्तर,
(३) ६४ ४
इस प्रकार से भी यर + ३ य ऊपर पूर्व प्रकार से मिला है ।
इसी भांति जब कि वर्गपूल का घनमूल अथवा घनमूल का वर्गमूल पघातमूल होता है और वर्गमूल के वर्गमूल का वर्गमूल राष्टघातमूल होता है इस लिये षड्धानमूल वा अष्टघातमूल जानना हो तो उक्त के अनुसार बार२ मूल लेने से भी अभीष्टमूल मिलेगा ।
अभ्यास के लिये और उदाहरण ।
क्या है ?
(१) ४९ अ° + ७० अक्रय + २५ कय इस का वर्गमूल क्या है?
उत्तर,
७ + ५ कय ।
-
(३) * – २*य े + ३ अथ – २ अ + य' इस का वर्गमूल क्या है ? - य + ये ? |
www.kobatirth.org
(६)
मूलःक्रया
उत्तर,
કા
३ यह वही चतुर्थीतमूल मिला नो
उत्तर,
.(४) २७ ३ – ५४ अ° + ३६
(७) ६४
Acharya Shri Kailassagarsuri Gyanmandir
४४८ अश्क + २७४४ अकरें + २४०१ क इस का वर्गमूल
८२ - २८ चक्र - ४९ करे ।
उत्तर ३-२।
(५) थ + १५ अय़ े + ७५ अ + १२५ * इस का घनमूल कहो ।
उतर
य+५द्म ।
मिक्लो ।
*' + २७ र ६० इस का ग्र-३ ।
- ८ इस का घनमूल क्या है ?
de
घनमूल
३३६ र + ५८८ घर - ३४३ र इस का
४५ - २१ ।
For Private and Personal Use Only
'घनमूल
जानो ।
उत्तर,
(5) ¥€ + 2 **2 + 8€ q°
उत्तर,
चा' + ४ को
(C) अ + ३ अभ्य ५ अ + ३ अथ' – व' इस का घनमूल क्या है ?
उत्तर, चा + त्राय य |
क यह किस का घन है ?
Page #79
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । - (१०) १६ +६४ यर- २२४ य३-५६ या + ३३६ यर-२१६ यर' + ८१र इस का चतुर्यातमूल क्या है?
उत्तर, २य+२ यर-३ ।
१ (११) - १५ य ल +६० यल-२७० याल' +४०५ यल --- २४३ ल' इस का पञ्चघातमूल क्या है?
उत्तर, य-३ल। (१२) य+१२य+६०य + १६० य+२४० + १९२ य+६४ इस का षड्यातमूल क्या है?
उत्तर, य+२
(१३) अ-अक+३८ अकर-५६ अक+७० अक -- ५६ अक' +२८ अक-अक+क इस का अष्टघातमल क्या है ?
उत्तर, अ-क।
.
. प्रकीर्णक ।
समशाधन वा पतान्तरनयन ।
३७। बीजगणित में पद को वा पदों के समूह को पक्ष कहते हैं। ऐसे दो पक्षों में किसी एक हि राशि को वा दो समान राशियों को जोड़ देना वा घटा देना इस क्रिया को समशेधन कहते हैं।
जो दो पक्ष समान हों उन को = इस समस्वयोसक चिह की दोनों और लिख देने से जो रूप बनता है उस को समीकरण कहते हैं। और जब कि समान दो राशिओं में समान हि मिलाने से वा घटाने से उन का समत्व नष्ट नहीं होता इस लिये जो किसी समीकरण में समशोधन करो तो उस के पक्षों के समय का नाश न होगा।
For Private and Personal Use Only
Page #80
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । इस लिये अक- ग + घ, इस समीकरण दासता को ग जोड़ देओ
तो अ+ ग =क-ग+ घ+ग, अर्थात् + ग = क + । ये भी दोनों पक्ष समान हैं। इसी भांति पर्व दोनों पक्षों में घ घटा देने से
अ-घ क -ग+घ-घ, अर्थात अ-घक-ग। ये भी समान हैं। अथवा दोनों पक्षों में कको घटा देने से और गको जोड देने से
अ-क+ग-क-ग+घ-क+ग, अर्थात अ-क+ग= घ। ये भी पत परस्पर समान हैं।
अथवा और भी जो दोनों पक्षों में अको घटा देओ और गको जोड़ देओ
तो - +ग= क-ग+घ- +ग,
अर्थात ग-क+घ-अये दोनों पक्ष समान हैं। इत्यादि।
इस में स्पष्ट देख पड़ता है कि समीकरण में उस के किसी पद का समशोधन करने से वह मद अपने धनत्व को वा अणत्व को पलट के दूसरे पक्ष में जाता है। इस लिये समीकरण में जो किसी पद का समयोधन करना हो तो उस पद को उस के पक्ष में से निकाल के उस का धनर्ण चिह्न पलटा के दूसरे पक्ष में लिखते हैं और इसी लिये इस कर्म का दूसरा नाम पतान्तरनयन रक्खा है।
इसी प्रकार से जो दो पक्ष समान न हों अर्थात विषम हों उन को > इस वार इस विषमस्वयोतक चिह्न की दोनों ओर लिखने से जो रूप बने सो विषमीकरण कहावे । और जब कि विषम दो राशियों में समान हि मिलाने से वा घटाने से वे वैसे हि विषम बने रहते हैं। इस लिये जो किसी विषमीकरण में समशोधन करो तो उस के पत वैसे हि विषम बने रहेंगे जैसे पूर्व में हैं।
For Private and Personal Use Only
Page #81
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
ER
।
+
प्रकीर्णक । - इस लिये जो अ-क>ग-घ इस विषमीकरण के दोनों पक्षों में घ नोड़ देओ तो अ-क + घ>ग-घ+ घ, __अर्थात् . अ-क+घ>ग। ये भी दोनों पत्त क्रम से अधिक न्यन हैं।
इसी भांति जो पर्व दोनों पक्षों में क जोड़ देओ तो अ-क+क>क+ग-घ, अर्थात् अ>क + ग - घ ये भी पत क्रम से अधिक न्यन हैं। और भी जो अ-य<+घ इन दोनों पक्षों में य जोड़ देओ
तो अ-य+य <क+घ+य, अर्थात अ<क+घ + य । ये भी दोनों पक्ष क्रम से वैसे हि न्यन अधिक हैं जैसे अ-य और क+घ ये हैं। . इस से जान पड़ता है कि > इस वा < इस चिह्न की दोनों ओर जो दो पक्ष हों उन में किसी एक पद का पत्तान्तरनयन करने से उन पत्तों का वैषम्य बिगड़ता नहीं।
अनुमान १ । समीकरण के दो पक्षों के हर एक पद का धन प्रम चिह्न पलट देने से भी उन दो पक्षों का साम्य बिगड़ता नहीं क्यों कि हर एक पद मानो पत्तान्तर में गया सा होता है।
अनुमान २ । यदि एक चिह्न से जुड़ा हुआ एक हि पद दोनों पक्षों में हो तो उस को छक दे सकते हैं।
इसी प्रसंग में विषमीकरणसंबन्धि कुछ सिद्धान्त लिखते हैं। . (१) जब कि धनात्मक वा मणात्मक पद का वर्ग धन हि होता है तो (य-र)२, वा, यर-२यर+r>.
: पक्षान्तरनयन से य+P>यर इस में जान पड़ता है कि कोई दो विषम राशिओं के धर्मों का योग सर्वदा उन के दूने गुणनफल से अधिक होता है। __(२) तीन विषम राशियों में हर एक दो २ राशियों के गुखानपानों के योग से उन तीन राशिओं के वर्गों का योग सर्वदा बड़ा होता है। .
For Private and Personal Use Only
Page #82
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । इस की उपपत्ति । जब कि ऊपर के सिद्धान्त से सिद्ध है कि । .. य+ > २ यर, य+ ल>२ यल और र+ल>रल : तब अधिक पतों का योग भी न्यन पक्षों के योग से बड़ा हि होगा :: २य+२+२ल'>२ यर + २यल + २रल.
और :: य+ + ल> यर + यल + रल यों उपपन्न हुआ। इसी युक्ति से यह भी तुरन्त सिद्ध होगा कि ३ (य+र+ल+व.)>२ (यर + यल + यव+रल+रव+लब) वा, य+र+ल+व> ३ (यर + यल + यव + रल + रव + लव)। (३) दो विषम राशिओं के योग के वर्ग से उन राशिओं के वर्गी का योग दूना सर्वदा बड़ा होता है। या तीन विषम राशिओं के योग के वर्ग से उन के वर्गों का योग तिगुना और चार विषम सशिनों के. योग के वर्ग से उन के वर्गों का योग चौगुना सर्वदा बड़ा होता है। और इसी भांति अगे भी जाना ।
इस की उपपत्ति जब कि य+r>२ यर, इस लिये दोनों पक्षों में य+र जोड़ देने से
२ य १२>य+ या+र, अर्थात् २ (य+) > (य + ) यो उपपन हुआ। और जब कि (य+र+ल)२ = य+र+ले+२यर+ यल+रल
:: पक्षान्तरनयन से २यर + २ यल +२ रल = (य+र+ल)२-३२-२-ल। परन्तु ऊपर के दूसरे सिद्धान्त के अनुसार । - य+२ +२ ल>२ यर --२यल +रल
. य+२ +२ल >(य +त) -य--१२-लर बोर : पक्षान्तरनयन से
យ
For Private and Personal Use Only
Page #83
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
६६
प्रकीर्णक ।
३ ८२ + ३ १२ + ३ ल' अर्थात् ३ (य' + र + ल') > (थ + श् + ल)’
यो उपपन्न हुआ । इसीयुक्ति से
४ (य' + r° + ल + व े) > ( + र + ल + ब) र
इत्यादि भी तुरन्त उपपच होता है ।
(४) तीन विषम राशियों के गुणनफल को उन तीन राशियों के योग से गुण देओ तो उस गुणनफल से भी उन तीन राशियों के चतुघोतों का योग बड़ा होता है ।
इस की उपपति ।
ऊपर के दूसरे सिद्धान्त के अनुसार जब कि
य + र + ल > यर + यल + रल
Acharya Shri Kailassagarsuri Gyanmandir
तो इसमें य, र, ल दून के स्थान में उन के वर्गों को रखने से स्पष्ट है कि य* + r* + ल* > य ेr + य ेल' + ₹ल यों होगा और जब कि थ' + १' > २ यर इस लिये 'ल' + 'ल' > २ यरल । इसी भांति सिद्ध होता है कि यर + र ेल > २३ घरल और यह + य ल > २यरल और अब कि अधिक पक्षों का योग न्यून पत्तों के योग से बड़ा हि होता है ।
.: २८१२+२'ल' + २'ल' > २यरल + २याल + २ ल अर्थात् श् + य ेल' + र 'ल' > यरल (य + र + ल)
În sat fag fanar fa a® + c*+a” >q2°C2 + q?a2 + c2a2 दस से अति स्पष्ट है कि
य* + * + ल > यरल (य + र + ल ) यह उपपत्र हुआ ।
(५) यस सिद्ध करो कि जब य
होता है।
1
से पर न्यून
+क और र = अ-क तो अ
न्यास । य अ + क और ₹ = - क
पहिले दो पक्षों में क्रम से दूसरे दोनों पक्षों को जोड़ देने से,
For Private and Personal Use Only
Page #84
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । य+1 = (अ+क) + (अ-क), वा, य+1 =२ । परन्तु य+r>२यर, ::२ अ>२यर: अ> यर। यों सिद्ध हुआ। (६) दो विषम राशिओं के वर्गयोग को उन्हीं दो राशिओं के गुणनफल से गुण देने से जो फल होगा उस से उन दो राशिओं के चतुर्घातों का योग सर्वदा बड़ा होता है।
उस की उपपत्ति । मानो य और र ये दो राशि हैं अब इन में जो य राशि र राशि से बड़ा हो तो स्पष्ट है कि य>ि इन दोनों पक्षों को य-र इस धनात्मक अन्तर से गुण देने से
य-यर> यर -र", तब पत्तान्तरनयन से
य+">य +यर, अर्थात य+r"> यर (य+र)।
और जो दो राशियों में य राशि र राशि से छोटा हो अर्थात् र>य तो >य। अब इन दोनों पक्षों को र-य इस धन अन्तर से गण देने से
-या>यर-य', . . तब पक्षान्तरनयन से
य+t">यर+घर', अर्थात य+r > यर (य+र)।
इस प्रकार से य और र दून राशिओं में य से रबड़ा हो वा छोटा हो तो भी य+r> यर (य+र) यही सिद्ध होता.है। यों उपपत्र हुआ।
. अभ्यास के लिये विषमीकरण के उदाहरण । (१) यह सिद्ध करो कि य> ६य-।
For Private and Personal Use Only
Page #85
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । (२) यह सिद्ध करी कि (अ+कर) (ग+) यह (अग+कघ)२ इस से सर्वदा बड़ा होगा परंतु जो इस में अम, क =घ और अम = कघ, न हो।
(३) यह सिद्ध करो कि (अ-कर) (गर-घर) यह (अग-कघ) इस से सर्वदा छोटा होगा परंतु जो इस में अग, क = घ और अग== पाघ, न हो। (8) यह सिद्ध करो कि (अ+क) इस से ८ (
अ क') यह सर्वदा बड़ा होगा परंतु जो अऔर क परस्पर समान न हों।
३८ । संक्रमण । दो राशिओं के योग और अन्सर पर से उन दो राशिओं को जानने के प्रकार को संक्रमण कहते हैं।
मानो य और र ये दो अक्षर कोई दो राशिओं के घोतक हैं और इन में 2 बड़े राशि का और र छोटे राशि का द्योतक है और अ उन के योग का और क उन के अन्तर का योतक है।
सब य+र= अ और य-र=क होगा। .:. (य+र) + (य-र) =अ+कवा य= १ (अ+क) और
(य+र)-(य-र) = अ-कवा र ३ (प्र-क)। - इस से स्पष्ट है कि को दो राशिओं का योग और अन्तर इन के योग का आधा बड़े राशि के समान होता है और इन के अन्तर का आधा छोटे के समान होता है। भास्कराचार्यजी ने भी लिखा है कि, योगोऽन्तरेणानयुतोऽर्धितस्तो राशी स्मृतं संक्रमणाख्यमेतत् । ।
३६ । इस प्रश्नम में अनेक उपयोगि सिद्धान्तों को कहते हैं जो सामान्य गणित से उत्पन्न होते हैं। [१] जब कि (अ+क) = अ +२ अक+कर,
और (अ-क) = २-२ अक + करे। तो इस से स्पष्ट है कि कोई दो राशिओं के योग का और अन्तर
For Private and Personal Use Only
Page #86
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । का वर्ग क्रम से उन दो राशिओं के वयों के योग में उन्हीं दो राशिओं. के द्विगुणित गुणनफल को जोड़ देने वा घटा देने से तो बने उस के समान होता है । जैसा, (१) (३ +५य) = (३ अ)२+२(
३ ४५य)+ (य)२ __ = +३० अय+२५ यर । (२) (५य-१३)२ =२५ य२-१३० य+ १६८ । (३) (७५-८फ) = ४९ - ११२ पफ + ६४ फ। [२] जब कि (अ+क) x (अ-क) = अर-को
तो इस से जान पड़ता है कि कोई दो राशिओं के योग और अन्तर का गुणनफल उन के वर्गों के अन्तर के समान होता है । जैसा,
(१) (२ य +३) ४ (२ य -३र) = ४ य-हर। (२) (अ+क+ग) (अ+क-ग) = { (+क) + ग} {(अ+क)-ग}
= (अ+क)२- गर= अ +२ अक + क- गरे । (३) (य + यर+t) (य-यर+र) = {(य+र) + यर} + (य' + र) ~यर} = (य+T)२-(यर)२= य+क्या +rl-या य+At+र।
अनुमान । किसी राशि के समान दो विभागों का गुणनफल उस राशि के विषम दो विभागों के गुणनफल से बड़ा होता है। । ___ मानो कि २ अ एक राशि है और इस के अ+क और अ-क ये दो विभाग हैं तब इन दो विभागों का गुणनफल
( क) (प्र-क)- रे-कर यह होगा। अब जो क = • मानो तो अ-क इस गुणनफल का मान सब से बड़ा होगा यह स्पष्ट है। परंतु तब वे विभाग प्रत्येक के समान हांगे अर्थात् दोनों परस्पर समान होंगे । इस लिये समान हि दो विभागों का गुणनफल सब से बड़ा होगा। यह सिद्ध हुआ।
For Private and Personal Use Only
Page #87
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
७०
प्रकीर्णक |
[३] जब कि (य + अ) (य + क) = य े + अ + क) य + अक ।
तो इस से स्पष्ट है कि य + अ और य + क ऐसे दो द्वियुक्पदों का गुणनफल त्रियुक्पद होता है और इस में पहिला पद य का वर्ग होता है, दूसरे पद में य का वारयोतक + क अर्थात् उन द्वियुक्पदों के द्वितीय पदों का योग होता है और तीसरा पद अक अर्थात् उन द्वितीय पदों का गुणनफल होता है । जैसा,
Acharya Shri Kailassagarsuri Gyanmandir
(१) (य+५) (य + ७) = य े + (५ + ७) य+५४०
य + १२ + ३५ ।
(२) (य – ३) (य – 8) य े + (- ३ - ४) य + (-३) x ( - 8) - ८२ - ७८ + १२ ।
(३) (य + ६) (य-२) = य े + (६ - २) य + ६४ (-२) = य + ४ य - १२ ।
इसी भांति
जब कि (य + अ) (घ+क) (य+ग) = य + अ + क + ग) य
+ ( क + अ + कग) य + अकग ।
तो इस में भी स्पष्ट दिखाता है कि य + अ य + क और य + ग ऐसे तोन द्वियुक्पादों के गुणनफल में पहिला पद यरे, दूसरे पद में यर का वारयोतक अ, क और ग इन का योग, तीसरे पद में अ, क और ग मैं दे। २ के गुणनफलों का योग य का वारयोतक होता है और चौथा पद अ, क और ग इन का गुणनफल होता है। जैसा,
इन
(१) (य + २) (य + ३) (य + ४)
= य + (२+३+४) य े + (२४३+२X४+३x४ ) य + २४३x४ = य३ + य े +२६य + २४ ।
(२)
(य + १) (य - ३) (य +५)
- य े + (१–३+५) य े+{(१X-३) + (१×५) + (-३४५) } य + १४-३५
= य + ३८२ - १३ य - १५ ।
For Private and Personal Use Only
Page #88
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । (३) (य - १) (य-२) (4-३) = य+(-१-२-३)य+ {(-१)(-२) + (-१)(-३) + (-२)(-३)य __ + (-१४-२४-३) = य-६ य+११ -६। [४] जब कि (8-- अक + कर) (अ+क) = अ + कर
और (अ+ अक+कर) (अ-क) = - करें। तो इस में स्पष्ट देख पड़ता है कि कोई दो राशियों के वर्गों के योग में उन्हीं राशिओं के गुणनफल को घटा देने वा जोड़ देने से जो बनता है उस को क्रम से उन दो राशियों के योग वा अन्तर से गण देने से उन राशिओं के घनों का योग वा अत्तर बनता है।
४० । जो राशि आप और १ छोड़ किसी दूसरे राशि से निःशेष भागा नहीं जाता उस को दृढ कहते हैं और जो भागा जाता है उस को अदृढ कहते हैं और अदृढ राशि दो वा बहुत दृढ राशिओं का गुणनफल होता है । जैसा,
प्रक, अ+क, य-२ल इत्यादि ये सब दृढ राशि हैं और २अ, य, अय, अ (अ-क) इत्यादि ये सब अदृढ राशि हैं।
४१ । इस प्रक्रम में अदृढ राशि के दृढ गुण्यगुणकरूप अवयव करने के प्रकार दिखलाते हैं । इस दृठ गुण्यगुणकरूप अवयव को खण्ड कहते हैं।
(१) किसी संयुक्तपदरूप अदृढ राशि के जो सब पद किसी एक हि केवलपद से नि:शेष भागे जाते हो तो उस केवलपदरूप खण्ड को अलग करना योगरीति से बहुत सुगम है । जैसा, (१) अक-कर = (अ-क) क । (२) अयर-३ अरेय = (अ-३य) प्रय।
For Private and Personal Use Only
Page #89
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । (३) ५ अय+ १० अन्य + ५ अ = ५ अश्य (अ+ २ अय+यर)
=५ अरेय (अ+य) । ... (४) ५य+१० यर+३यर+६ =५य (य+२र) +३र (य+२१)
= (५ +३र) (य+२२)। (५) अ+ अ + अ + ७ अ अ (अ+ + +७) ____ = अ{अ (+9) + (अ +9)} = अ (A+ १) (अ+७)।
[शनो उद्विष्ट राशि दो पदों के वर्षों का अन्तर है उस के खण्ड करने हों तो एक खण्ड उन दो पदों का योग, और एक उन दोनों का अन्तर ऐसे दो खण्ड होंगे। इस की उपपत्ति (३९) वे प्रक्रम के दूसरे सिद्धान्त से स्पष्ट है । जैसा,
(१) ४ अर-य = (२ +३य) (२ -३ य)। (२) १-2 = (१+ 1) (१-य) = (१+ य२) (१+ 1) (१ - 2)। (३) ४ अकर- (अ+कर-गर) = (२अक)- (अ+कर-ग)२
= (२ अक+अ+कर-गर)(२ अक-अर-कर+गर) = {(अ+क)२-- ग} {गरे- (अ-क)}
= (अ+क+ग)(अ+क-ग) (ग+अ-क) (ग-- +क)। इसी भांति सिद्ध करो कि (१) १२-२-ल+वर-२(यव-रल)
= (य+र-ल-व)(य-र+ल-व)। (२) अ-का= (अ+क) (A+क') (A+कर) (अ+क)(अ-क) (३) ४ (अघ+ कग)२- (अरे-क-गर+घ)२
=(-अ+क+ग+घ)(अ-क+ग+घ)(अ+क-ग+घ)(अ+++ग-घ) । [३] जो त्रियुक्पद य + पय +फ इस भांति का हो उस में जिन दो संख्याओं का गुणनफल फ होगा उन का योग जो प के समान हो तो (३९) वे प्रक्रम के तीसरे सिद्धान्त से उस त्रियुक्पद के खण्ड तुरन्त ज्ञात होंगे। जैसा,
For Private and Personal Use Only
Page #90
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक। (१) ३+७+ १२ = 2 + (३+४) य+३४४
__ = (य+३) (य+४)। (२) य - ८ + ७ = 1+ (-१-७) य+ (-१) (-७)
__ = (4-१) (य-७)। (३) ३२-२५-३५ = 2+ (५-७) य+५४ (-७)
= (य+५) (य-७)। [४] जो उद्दिष्ट राशि दो पदों के धनों का योग वा अन्तर है उस के खण्ड करने हों तो क्रम से एक खण्ड उन दो पदों के गुणनफल से घटा हुआ वा जुडा हुआ उन दो पदों के वर्गों का योग, और एक उन दो पदों का योग वा अन्तर ऐसे दो खण्ड होंगे । इस की उपपत्ति (३९) वे प्रक्रम के चौथे सिद्धान्त से स्पष्ट है । जैसा,
(१) अ+८ कई = (अर-२ अक + ४ क) (अ+२क)। (२) अ६- य = (अ + य३) (अ - य३)
= (अर-अय+य) (अ+य) (अ+ अय+य) (अ-य)। (३) अ + ३ अक+३ अक+क-ग
= ( क)३ - गरे = (अ+क)२+ ग (अ+क)+गर (अ+क-ग)
= (अ+२ अक+क+अग+कग+गर) (+क-ग)। [५] कहीं २ उद्दिष्ट अदृढ राशि के खण्ड करने के लिये उस में कितने एक पदों के अपनी बुद्धि से ऐसे दो वा अधिक भाग करो वा उस अदृढ राशि में ऐसे एक वा अनेक पद जोड के घटा देओ कि जिन से अदृढ राशि पहिले प्रकारों से खण्ड करने के योग्य होवे । यह कल्पना गणित में प्रति अभ्यास होने से आप से आप मन में प्रगट होती है। जैसा, - (१) य+५यर + = +२ यर +३ यर+६२ .
= य (य+२ +३र (य+२२)= (य+३र) (य+२२)।
For Private and Personal Use Only
Page #91
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
७४
५ कर
(२) अ + ४ अक
- क + ५ अक
५ कर
(क) + ५ क ( क) = ( + ५क) (- क) 1 (३) घरे + य + १० य + २८२ - २य - ४+५+ १० य े (य + २) - २८ (य +२) + ५ ( + २) (य े - २८ + ५) (य +२) ।
1
(४) + ४ क + ३ क
( + २क) २ - क
www.com
www.kobatirth.org
(६) + ६ क + १२
प्रकीर्णक |
i
(
―
(५) थ* + यल +ल' = य' + २य ेल' + ल' - यल
=
= (य े + ल े) २ – (यल)= (य े + यल + ल े) (य े-यल + 'ल') ।
+ ६ क +१२
( + २क) ३ - करे
-
+ 8 क + ४ कर (+३क) ( + क) ।
Acharya Shri Kailassagarsuri Gyanmandir
+ ७ करे
क + ८ करे - करे
{(अ + २क) + (अ + २क) क + क े} ( + क)
+ ५ क + ७ क े) (+क) ।
[६] जिस बहुयुक्पद को सुधार के लिखने से उस के आदि में जो मुख्य अक्षर का ( वा मुख्य पद का ) सब से बड़ा घात होगा उस का वारयोतक १ हो और अन्त के पद में मुख्य अक्षर (वा पद) को न हो वह बहुयुषपद जो किसी द्वियुक्पद से निःशेष होने के योग्य हो तो उस द्वियुक्पद के जानने का प्रकार ।
उद्दिष्ट बहुपद को सुधार के लिखो अर्थात् उस में मुख्य तर के (वा किसी मुख्य पद के ) घातों के घातमापक क्रम से घटते हुए रहें यों बना के लिखा तब अन्त में जो पद ऐसा होगा कि जिस में मुख्य अक्षर (वा पद) कोइ न हो वह जितनी श्रृङ्कात्मक वा बीजात्मक संख्यात्रों से निःशेष होता हो अर्थात् उस के जितने अपवर्तन हों उन में हर एक अपवर्तन को धन और ऋण मान के उस को उस मुख्य अक्षर ( वा पद) के समान माना और उस से उद्दिष्ट पद में मुख्य जातर (घा पद) का
For Private and Personal Use Only
Page #92
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । उत्थापन करी । इस उत्थापन से जिस अपवर्तन से उद्दिष्ट पद का मान शून्य होवे उस को मुख्य अक्षर (धा पद) में घटा देओ सो अन्तर उस उद्विष्ट पद का एक खण्ड होगा अर्थात् उस अन्तर से वह उद्दिष्ट पद निःशेष होगा।
उदा० (१) य२-७ य+१० इस का जो द्वियुक्पद खण्ड हो उस को अलग करो।
यहां अन्त के १० इस पद के १, २, ५ और १० इतने अपवर्तन हैं इन में पहिले य=+१ मान के उत्थापन करने से
१२-७४१+१०-१-७+ १० = ४ । फिर य = - १ मान के उत्थापन करने से
(-१)+9x१+१०=१+ +१०= १८ । फिर य = +२ मान के उत्थापन से
२२-७४२+ १० = 8-१४ + १० = ० ... यों २ इस दूसरे अपवर्तन से उद्दिष्ट पद का मान • होता है __.. य -२ यह उद्दिष्ट पद का एक खण्ड है। इसी भांति य =+५ मान के उत्थापन से
५२-७४५+ १० = २५ --३५+ १० = . . यों ५ इस तीसरे अपवर्तन को य के समान मानने से भी उद्दिष्ट पद का मान • होता है।
:: य-५ यह भी उद्दिष्टपद का एक खण्ड है। इस प्रकार से
य-७य + १० = (य-२) (य-५) यों खण्ड अलग हुए । उदा० (२) • य +२ य-य-६ इस में जो खण्ड द्वियुक्पद हों उनको अलग करो।
For Private and Personal Use Only
Page #93
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
DE
प्रकीर्णक ।
इस में अन्त के ६ इस पद के १,२,३ और ६ ये चार अपवर्तन हैं इन में – १,२ र ३ इन तीनों को य के समान मान के उद्दिष्ट पद में घ का अलग २ उत्थापन करने से उद्दिष्ट पद का मान • होता है । इस लिये उद्दिष्ट पद में य + १, य १२ और य + ३ ये तीन खण्ड हैं
: +२ - ५६ - ६ = (य + १) (य - २) (य + ३) ।
उदा० (३) य' – रे - ४० युक्पद हों उन को अलग करो ।
उदा० (४) य - ७८ + उन को अलग करो ।
www.kobatirth.org
इस में अन्त के २१ इस पद के १, ३, ० और २१ इतने अपवर्तन हैं इन में केवल + ३ और - ० इन दो अपवर्तनों से उत्थापन करने से उद्दिष्ट पद का मान होता है । इस लिये य ३ और य +9 इन दोनों द्वियुक्पदों से उद्दिष्ट पद निःशेष होगा ।
०
: - ३ - ४० य े + १०९ य - २१ = (य- ३) (+3 ) (घ२ - ५८ + १) । - १२ इस में जो खण्ड द्वियुक्पद हों
पद दृढ
है
यहां अन्त के १२ इस पद के १, २, ३, ४, ६ और १२ इतने अपवर्तन हैं इन में चाहो उस अपवर्तन से उत्थापन करो तो भी उद्दिष्ट पद का मान शून्य नहीं होता इस लिये यह बहुयुक्पद किसी द्वियुक्पद से निःशेष न होगा | और जब कि इस में मुख्य अक्षर का सब से बड़ा घात घन है इस लिये यह और भी किसी से निःशेष न होगा इस लिये यह उद्दिष्ट
I
Acharya Shri Kailassagarsuri Gyanmandir
इस प्रकार की उपपत्ति ।
+ १०९६ - २१ इस में जो खण्ड द्वि
जब कि (य- अ) (य-क) = यर ( + क) य + क
--
(घ) (य-क) (य-ग) = य - (अ + क+ग) य
+ (अक + अ + कग) य - अकग,
इत्यादि ।
इस में स्पष्ट दिखाई देता है कि य- अ, य • क इत्यादि ऐसे द्वियुक्पदों
For Private and Personal Use Only
Page #94
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
प्रकीर्णक |
के
गुणनफल
मैं आदि में केवल य का घांत रहता है और उस का बारयोतक १ होता है और अन्त में अ, क ग इत्यादियों का गुणनफल रहता है । इस लिये ऐसे बहुयुक्पद का जो य ऐसा कोइ खण्ड हो तो उस पद का प्रकग यह अन्त का पद अवश्य अ से निःशेष होगा और जो य के समान को मानो तो य अ का मान शून्य होगा और तब जिस का खण्ड थ - अ होगा उस बहुयुक्पद का मान भी होगा क्योंकि शून्य से चाहो उस को गुण देओ तो भी गुणनफल शून्य हि होता है इस से उक्त प्रकार की उपपत्ति स्पष्ट होती है ।
शून्यः
इसी भांति जब कि
(य- क) (गय - घ) = गय े - (अघ + कग) य + कघ, इत्यादि ।
....
-
तब इस प्रकार के बहुयुक्पद का अर्थात् जिस में य के सब से बड़े घात का भी १ छोड़ और कोइ वारयोतक हो उस बहुयुक्पद का जो य क ऐसा एक खण्ड हो तो अय क =
करने से अथ
Acharya Shri Kailassagarsuri Gyanmandir
-
=
For Private and Personal Use Only
51,
-
क
न
अर्थात् य = होगा । इस लिये जो य के समान मानो तो य यह द्वियुक्पद शून्य होगा और यह जिस बहुयुक्पद का खण्ड हो वह भी अवश्य • होगा |
इस से यह सिद्ध होता है कि उक्त प्रकार के उद्दिष्ट बहुयुक्पद में आदि में जो वारयोतक हो उस के सब अपवर्तन जानो और अन्त के पद के भी सब अपवर्तन ठहराओ। फिर हर एक आदि के अपवर्तन का हर एक अन्त के अपवर्तन में अलग २ भाग देने से जितनी लब्धि आवेंगी उन में जिस लब्धि को धन वा ऋण मान के वैसी लब्धि को मुख्य अक्षर के समान करके उत्थापन करने से उद्दिष्ट पद का मान शून्य होगा उस लब्धि के छेद से मुख्य अक्षर को गुण के उस गुणनफल में उस लब्धि का अंश जो लब्धि के अनुसार धन वा ऋण होगा उस को घदा देओ सो अन्तर उद्दिष्ट पद का एक खण्ड होगा ।
Page #95
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । उदा०। ३ य + ४ य+ ११ य - १० इस बहुयुक्पद के खण्ड करो। . इस में आदि के ३ इस वारद्योतक के १ और ३ ये दो अपवर्तन हैं और अन्त के १० इस पद के १, २, ५ और १० ये चार अपवर्तन हैं। इन में आदि के ३ इस अपवर्तन का अन्त के २ इस अपवर्तन में भाग देने से जो यह लब्धि पाती है इस को धन मान के वैसी को नो य के समान करके उत्थापन करो तो उद्दिष्ट बहुयुक्पद का मान शन्य होता है इस लिये उक्त प्रकार से ३ य-२ यह उद्दिष्ट पद का एक खण्ड होता है।
:.३य
४ य+११य-१० = (३ य-२) (य+२
+५) ।
अभ्यास के लिये उदाहरण ।
(१) य +११ य+३० = (य+५) (य+६)। (२) य-१६ य +६३ = (य-७) (य-६)।
य+२ अय-८अ = (य+४ अ) (य -२ अ)। (४) य+१४ य+६३ य+60 = (य + ३) (य+५) (य +६)। (५) य३-५ यर-२२ य+५६ = (य-२) (य+४) (य-७)। (E) य-२३-११ -२० =(य-५) (य+३य+४) । (७) य-२८ य+१५ = (य-५) (य+५ -३) । (८) अ +२ अक+ea = (अ+३ क) (अर-अक+३ कर) । () अ- २-१८ = (अ-३) (अ+२ +६)। (१०) अ + अश्य-अय+३ य = (अ+३ य) (अ-य) । (११) य+ अयः-२५ अयर-२६ अश्य +१२० अ
. = (य-२अ) (य+३अ) (य-४अ) (य+अ)। (१२) अ-१० +५ +१४ = (अ+१) ( -२) (अ+9-७) । (१३) य-१२ य + 8७ य-६० = (य-३) (यर - ४) (य२-५)।
For Private and Personal Use Only
Page #96
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(१४) ६ + १७२ - ३० - ५६
www.kobatirth.org
प्रकीर्णक ।
२) (२ + ७) (३+४) ।
४२ । जो दो राशि १ छोड़ और किसी एक हि राशि से निःशेष भागे नहीं जाते उन को परस्पर दृढ कहते हैं और जो भागे जाते हैं उन को परस्पर अदृढ कहते हैं ।
- यहां, ग
४३ । कोइ दो राशियों में छोटे राशि का बड़े राशि में भाग देने से जो शेष बचेगा उस का उस के भाजक में भाग देओ तब जो दूसरा शेष बचेगा उस का फिर उस के भाजक में भाग देओ । यों उन दो राशियों का परस्पर में भाग देने से जिस शेष से उस का भाजक निःशेष होगा उस शेष से वे दोनों राशि निःशेष भागे जावेंगे और उस से भागे हुए वे दो राशि परस्पर दृढ होंगे ।
क) अ (त
कत
-
मानो और क ये दो राशि हैं। इन में राशि क से बड़ा है और मानो कि में क का भाग देने से त लब्ध होता है और ग शेष रहता है फिर ग का क में भाग देने से थ लब्ध होता है और घ शेष रहता है । फिर भी घ का ग में भाग देने से द लब्ध होता है और ष कुछ नहीं बनता है । इस का न्यास दिखलाते हैं ।
·
ग) क (थ
गथ
घ) ग (द
घद
Acharya Shri Kailassagarsuri Gyanmandir
तो यहां घ से और क ये दोनों निःशेष होवेंगे । इस की उपपत्ति
इस भांति स्पष्ट होती है ।
घद = ० : पक्षान्तरनयन से,
୦୧
ग
For Private and Personal Use Only
घद |
Page #97
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
क
घ,
और अ
कल = ग,
= त + तथद + द) घ
गथ
Birdie
और
में घ बड़ा
1
.. π ऋ घ - क
5. श्र
यहां स्पष्ट देख पड़ता है कि घ से अ और क ये दोनों भी निःशेष:
होते हैं ।
-
कत
गथ = फच
प्रकीर्णक
क = घ + गथ
ग + कत
अ
और क इन को जितने राशि निःशेष करते होंगे उन सभी
है
1
www.kobatirth.org
क्यों कि जो यों न मानो और कहा कि और क इन को निःशेषः करनेहारों में सभों में बड़ा राशि च है और इस का और के में अलग भाग देने से क्रम से प और फ ये दो लब्ध होते हैं । तो
= पच,
और क फच होगा:
-
पच
घ + घदथ = (१ + यद) घ ।
Acharya Shri Kailassagarsuri Gyanmandir
घद + त (१+ यद) घ
-
तफच
थ ( प - तफ) च (फ
-
( प - तफ) च । और
थप + तथफ) च ।
इस से स्पष्ट प्रकाशित होता है कि च से घन होता है । तोच सब से बड़ा नहीं हो सकता। इस लिये और क इन को निःशेष: करनेहारों में घ सब से बड़ा है. यह सिद्ध हुआ । इस को और क का महत्तमापवर्तन कहते हैं । और इसी लिये इस से भागे हुए और क ये दो राशि फिर १ छोड़ किसी दूसरे एक हि राशि से निःशेष न होंगे अर्थात् वे दृढ होंगे ।
श्रीयुत भास्कराचार्यजी ने भी लीलावती और बीजगणित के कुछकाध्याय में कहा है कि
परस्परं भाजितयेोर्ययार्थः शेषस्तथेोः स्यादपवर्तनं सः । तेनापवर्तेन विभाजित। यौ तौ भाज्यहारी दृढसंज्ञको स्तः ॥
- यह रेखागणित के सातवें अध्याय के दूसरे क्षेत्र में भी क्षेत्र रीति से सिद्ध किया है ।
For Private and Personal Use Only
Page #98
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
प्रकीर्णक ।
૧
अनुमान १ । दो राशियों का परस्पर में भाग देने से जो हर एक भागहार में भाज्य भाजक रहते हैं उन का भी महसमापवर्तन वही होता है जो उन दो राशियों का महत्तमापवर्तन है ।
४२६) ६१२ (१
४२६
जैसा । ४२६ और ६१२ इन के महत्तमापवर्तन के लिये इन का परस्पर में भाग देने का न्यास |
१८६) ४२६ (२
३७२
५४) १८६ (३
१६२
२४) ५४ (२
४८
Acharya Shri Kailassagarsuri Gyanmandir
६) २४ (४
२४
इस प्रकार से ४२६ और ६१२ इन का महत्तमापवर्तन ६ है । अब यहां हर एक भागहार में ४२६ और १८६, १८६ और ५४, ५४ और २४ और २४ और ६ ये जो भाज्य भाजक हैं इन का भी महत्तमापवर्तन ६ यही है ।
अनुमान २ | दो राशियों को जो कोइ तीसरा राशि निःशेष करता हो वह उन दो राशियों के महत्तमापवर्तन को भी निःशेष करेगा ।
अनुमान ३ । जो दो राशि परस्पर दृढ हैं अर्थात् १ छोड़ किसी अन्य एक हि राशि से निःशेष नहीं होते उन का परस्पर में भाग देने से अन्त का भानक १ होगा ।
४४ । जो और के इन दो राशियों का चक गुणनफल ग का वर्त्य अर्थात् ग से निःशेष होने के योग्य हो और क और ग ये दो परस्पर दृढ हो तो ग से अ निःशेष होगा ।
For Private and Personal Use Only
Page #99
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णकः । इस की उपपत्ति । जब कि क और ग परस्पर दृढ हैं तो इन का परस्पर में भाग देने से अन्त का भाजक अवश्य १ होगा । सो ऐसा
क) ग (त
घथ च) घद चद १) च (च
यहां, ग-कत-घ, क-घथ = च, और घ-चद = १ । :: अग --अक्त = अघ, अक्र - अपथ = अच और अघ - अचद अब :: अक यह ग से निःशेष होता है ।
अघ भी ग का अपवर्त्य है, - :: अच भी ग का अपवर्त्य है, और :: ग से अनिःशेष होगा। यह सिद्ध हुआ।
यह उपपत्ति ग को क से बड़ा मान के दिखलाई इसी भांति क को ग से बड़ा मान के भी स्पष्ट होती है ।
इस की प्रकारान्तर से उपपत्ति दिखलाते हैं।
जब कि क और ग ये परस्पर दृढ हैं तब जो इन दोनों को असे गुण देओ तो स्पष्ट है कि अक और अग इन दो गुणनफलों का मह. समापवर्तन अ होगा (प्र • ४३) और अक यह ग का अपवर्त्य माना है और अग यह ग से निःशेष होता हि है। इस लिये जब कि अक और अग इन दोनों को ग निःशेष करता है तब (४३) वे प्रक्रम के दूसरे अनुमान से सिद्ध होता है कि ग यह अक और अग इन के महत्तमापवतन को अर्थात् अको भी निःशेष करेगा। यों उपपन्न हुआ।
For Private and Personal Use Only
Page #100
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्रकीर्णक । ..जैसा । ५और ६ इन का गुणनफल ३० है । यह ३ से निःशेष होता है और ५ और ३ ये परस्पर दृढ हैं तो ६ यह संख्या ३ से निःशेष होगी। .. इसी भांति जो प्र-कर यह ग से निःशेष होता है और अ-क यह ग से दृढ है तो अ+ क यह अवश्य ग से निःशेष होगा। अर्थात् दो राशिओं के वर्गों का अन्तर जो किसी तीसरे राशि से निःशेष होता हो और वह तीसरा राशि उन दो राशियों के अन्तर से दृढ हो तो उन दो राशिओं का योग अवश्य उस तीसरे राशि से नि:शेष होगा ।
४५। जो अ और क ये दो राशि प्रत्येक ग से दृढ हों तो उन का अक गुणनफल भी ग से दृढ होगा। __ क्यों कि जो ऐसा न हो अर्थात ग और अक ये दोनों घ से निःशेष होते हों तो घ यह अऔर क इन दोनों से दृढ होगा (क्यों कि ग उन दोनों से दृढ है) और घ से अक अपवर्त्य है और असे दृढ है। इस लिये ऊपर के प्रक्रम से क यह घ से निःशेष होगा। परन्तु क तो घ से दृढ है सा क्यों कर निःशेष होगा? इस लिये अक यह ग से दृढ नहीं सो नहीं किन्तु दृढ हि है।
रेखागणित के सातवें अध्याय के चौबीसवे क्षेत्र में इस की उपपत्ति क्षेत्ररीति से भी दिखलाई है।
जैसा । ६ और ८ प्रत्येक ५ से दृढ हैं तो ६४८ अर्थात ४८ यह गुणनफल भी ५ से दृढ होगा।
इसी भांति । नो अ+क और अ-कये दोनों ग से दृढ हों तो अ- करे यह भी ग से दृढ होगा।
अनुमान १ । नो अराशि क, ग, घ इत्यादि प्रत्येक राशि से दृढ हो तो वह क, ग, घ इत्यादिओं के गुणनफल से भी दृढ होगा। - क्यों कि जब अ यह क और ग से दृढ है तो वह कयं इस गुणानफल से भी दृढ होगा और जब अ यह कग और घ से दृढ है तो यह उन के कगघ गुणनफल से भी दृढ होगा। ऐसा हि आगे भी जाना।
For Private and Personal Use Only
Page #101
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
g
प्रकीर्णक । जैसा । १२ यह संख्या ५, ७ और ११ इन तीनों संख्याओं से दूठ हो तो ५४७ x ११ अर्थात ३८५ यह संख्या भी १२ से दृढ होगी।
अनुमान २ । जो अ यह क से दृढ हो तो वह कर, करे, क' इत्यादिकों से भी दृढ होगा।
क्यों कि जब अ यह क और क से दृढ है तो वह उन के गुणनफल से अर्थात् कर से भी दृढ होगा। इसी भांति आगे भी जानो।.
जैसा । ४ यह संख्या ३ से दृढ है तो ६, १७, ८१ इत्यादि संख्याको से भी ४ यह संख्या दृढ होगी।
अनुमान ३ । नो अ, क, ग इत्यादि प्रत्येक त, थ, द इत्यादिकों से दृढ हो तो अ, क, ग इत्यादिओं का गुणनफल भी त, थ, द इत्यादिओं के गुणानफल से दृढ होगा। ___ क्यों कि जब अ, क, ग इत्यादि प्रत्येक त, थ, द इत्यादिकों से दृष्ठ हैं तो पहिले अनुमान से अकग इत्यादि यह गुणनफल भी त, थ, द इत्यादिकों से दृढ होगा। और इसी लिये अकग इत्यादि यह गुणनफल भी तथद इत्यादि इस गुणनफल से दृढ होगा ।
जैसा । ३, ४ और ५ ये तीनों संख्या 9, ११ और १३ इन तीनों संख्याओं से दृढ हैं तो ३ ४ ४ ४ ५ अनीत् ६० यह संख्या ७४११४ १३ अर्थात् १००१ इस संख्या से दृढ होगी।
अनुमान ४ । जो अ यह क से दृढ हो तो अरे, अरे, अ' इत्यादि प्रत्येक कर, करे, क इत्यादिकों से दृढ होंगे। . - कया कि जब अ यह क से दृढ है तो (२) रे अनुमान से अरे, अरे इत्यादि सब प्रत्येक क मे दृढ होंगे। और इसी लिये अरे, अरे, इत्यादि सब हर एक कर, करे इत्यादिकों से दृढ होंगे।
जैसा । २ और ३ ये परस्पर वृढ़ हैं तो ४, ८, १६ इत्यादि संख्या भी प्रत्येक ६, २०, ८१ इत्यादि प्रत्येक संख्या से दृढ़ होगी।
For Private and Personal Use Only
Page #102
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
महत्तमापवर्तन | अध्याय ३ ।
————————$($at
Acharya Shri Kailassagarsuri Gyanmandir
इस में बीजात्मक पदों का महत्तमापवर्तन और लघुतमापवर्त्य जानने के प्रकार हैं ।
१ महत्तमापवर्तन ।
४६ । जो दो वा बहुत पद जितने पदों से अपवर्त्य हैं उतने उन पदों के अपवर्तन कहलाते हैं और उन अपवर्तनों में जो सब से बड़ा हैं उस को उन दो वा अधिक पदों का महत्तमापवर्तन कहते हैं ।
대
जैसा । अकग और कगघ इन दो पदों के क, ग और कगु इतने - अपवर्तन हैं और इन सभों में कम सब से बड़ा है इस लिये यह उन दो पदों का महत्तमापवर्तन है ।
इसी भांति अकगर, अगयर और गयरल इन के ग, र और गर इतने अपवर्तन हैं परंतु इन में गर सभों से बड़ा है इस लिये यह महत्तमाप्रवर्तन है ।
जानना चाहिये कि यहां महत्तमापवर्तन करने से भी वह अपने पदों को निःशेष कर सकता है पर सर्वदा महत्तमापवर्तन को धनात्मकः हि मानते हैं ।
४७ । जो बीजात्मक केवलपदों का महत्तमापवर्तन जानना हो तो वह उन पदों को बिचार के देखने से तुरन्त ज्ञात होगा । जैसा नीचे लिखे हुए उदाहरणों में ।
उदा० (१) २४ अय ेर और १६ यरल इन- का महत्तमापवर्तन व्य है । क्योंकि २४ अय = ८ ६२३२ X ३ ग्रर और १६ घरेल = ८ १२ x २ यल यहां ३ पर और २ यल ये दूसरे अवयवः परस्पर. दृढ
For Private and Personal Use Only
1
उदा० (२) १५ ऋक, १० कय और २० करें इन का महत्ततापवर्तन ५ है इसका भी कारण वहां है ।
Page #103
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । . उदा० (३) ३ अक (य-र) और अघ (य - र)२ इन का महत्तमाप. धर्तन अ (य - र) है। ..
उदा० (४) २ (अ+ 2)२ (अ+३०), ३ (अ+ क) (अ+३ क)२ और ५ (+ क)२ (अ+३ क) इन का महसमापवर्तन (अ+ क) (+३ क) यह है।
४८। बीजात्मक दो संयुक्तपदों का महत्तमापवर्तन निकालने की रीति । • पहिले उद्दिष्ट पदों को सुधार के लिखो फिर संभव हो तो उन दोनों में ऐसे एक हि केवलपद का नि:शेष भाग देओ कि जिस से भागे हुए उद्विष्ट पद फिर किसी एक हि केवलपद से निःशेष होने के योग्य. न रहें। यों निःशेष भागे हुए उद्दिष्ट पदों को लघुपद कहो । और दोनों उद्दिष्ट पद यदि किसी एक हि केवलपद से निःशेष होने के योग्य न हों तो उद्दिष्ट पद हि लघुपद कहावें । - फिर उन दो लघु पदों में जिस एक पद में दूसरे का भाग लग सके उस में भाग देओ तब जो शेष बचेगा उस का उस के भाजक में भाग
ओ फिर भी जो शेष बचेगा उस से फिर वही विधि करो यों उन लघुपदों का परस्पर में भाग देने से जिस शेष से उस का भाजक निःशेष होगा वह उन दो लघुपदों का महत्तमापवर्तन है। अब जो उद्दिष्ट पद हि लघु हों तो उन का महत्तमापवर्तन यही होगा और जो उद्दिष्ट पद लघु न हों अर्थात भागे हुए उदिष्ट पद लघु हो तो उस भाजकरूप केवलपद में उन लघुपद्रों के महत्तमापवर्तन को गुण देओ वह गुणनफल उद्दिष्ट पदों का महत्तमापवर्तन है। __ यहां लघुपदों का महत्तमापवर्तन निकालने की जो रीति लिखी है उस की उपपत्ति (४३) वे प्रक्रम से स्पष्ट प्रकाशित होती है। अब जो उद्दिष्ट पद हि लघु हों तो जो लघुपदों का महत्तमापवर्तन है सो हि उद्दिष्ट पदों का होगा और नो भागे हुए उद्दिष्ट पद लघु हों तो
For Private and Personal Use Only
Page #104
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
समावर्तन |
यहां लघुषों का महत्तमापवर्तन भी भागा हुआ आवेगा इस लिये इस को उस भाजकरूप केवलपद से गुण देने से वह गुणनफल उद्दिष्ट पदों का महत्तमापवर्तन होगा यह स्पष्ट है ।
1
Acharya Shri Kailassagarsuri Gyanmandir
यहां लघुपदों का परस्पर में भाग देने में हर एक भाजक जिस पद से निःशेष भागा जाता होगा (जो पद उस भाजक के भाज्य से दृढ हो) उस का भाग दे के फिर उस भागे हुए भाजक से क्रिया को बढ़ाओ और हर एक भागहार में जो लब्धि का वारयोतक भित्र अने के योग्य हो तो भाज्य को ऐसे एक छोटे पद से गुण देओ कि जिस से लब्धि का वारक अभिन्न आवे और जो गुणक रूप छोटा पद भाजक से दृढ होत्रे फिर पूर्ववत् क्रिया करो |
58
इन दो विशेष विधियों को कहने का कारण यह है कि इन से लब्धि अभिनयाती है और इसी लिये गणित में गौरव नहीं होता और इन से महत्तमापवर्तन में कुछ अन्तर नहीं होता इस का कारण यह है ।
For Private and Personal Use Only
क्यों कि अ और
मानो कि अब और कघ दून का महत्तमापवर्तन घ है तो और क ये अवश्य परस्पर दृढ होंगे और ग एक राशि से दृढ होतो अघ और कगध इन का महत्तमापवर्तन घ ही होगा कग ये भी दोनों (४५, वे प्रक्रम से परस्पर दृढ होंगे। इस से स्पष्ट है कि जिन दो राशियों का महत्तमापवर्तन निकालना है उन दो राशियों मैं एक राशि को जो किसी तीसरे राशि से गुण देओ वा भाग देओ जो राशि उन दो राशियों में दूसरे राशि से दृढ हो और फिर वह गुणा हुआ वा भागा हुआ पहिला राशि और केवल दूसरा राशि इन का महत्तमापवर्तन निकालो तो भी वह उन दो राशियों के महत्तमापवर्तन के समान हि होता है । अब इस से और (४३) वे प्रक्रम के पहिले अनुमान से विशेष विधियों की उपपत्ति स्पष्ट प्रकाशित होती है । उदा० (१) ६ + २ - ४४ य + १० और २८ + य - १५ इन का महमापवर्तम क्या है ?
Page #105
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
द
www.kobatirth.org
न्यास, २य े + य - १५ ) ६ य े +
महत्तमापवर्तन |
यहां अन्त का भ
का महत्तमापवर्तन
•
६३ + ३२ - ४५ य
- २०१ +
- २८२ -
फिर, २- ५) २ + य १५ ( ८ + ३
श्य२-५ य
६ य - १५
६य - १५
य े - ४४ य् + १० (३८ - १
२- ५ यह है, इस लिये यह उद्दिष्ट पदों
-
उदा० (२) ३+कर+करे और + ३ क + ३ कर + २ करें इन का महत्तमापवर्तन क्या है ?
न्यास, अ* + अ ेक - अक + २क) + ३
अ +
Acharya Shri Kailassagarsuri Gyanmandir
अ + २क) * + अक
+ क
क
क + २ क
२य - ५
चकर
य + १०
य + १५
क + ३
क -
२
क + ४ कर
'अब यह शेष भाजक होगा पर यह २ ग्रक मे निःशेष होता है और २शेष रूप भाजक के भाज्य से भी दृढ़ है इस लिये शेष में २ क का भाग' देने से ।
क + २ कर
चाक + २करे
अकर + २ करे - क + कर
(
For Private and Personal Use Only
क + २ (१
क + २ करे
Page #106
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । इस लिये यहां अ+२क यह महत्तमापवर्तन है।
उदा० (३) ३य३ - १० ५२+१०य-७ और रय+३य-३य+५ इन का महत्तमापवर्तन क्या है ? __ यहां उद्दिष्ट पदों में किसी एक का दूसरे में भाग देने से लब्धि भिव
आती है। इस लिये पहिले उद्दिष्ट पद को भाज्य मान के उस को दो से गुण के क्रिया को बढाओ।
३१३-१० य+१०३-७
२ य+३५२-३य+५)६५३-२०३२+२० य-१४ (३
६५३+ (य-९ य+१५
• -२९ य+सय-२९ शेष में - २९ का भाग देने से यर-य+१)२य +३य-३५+५(२य+५
२३३-य+२य
५य-५ य+५ ५५२-५ य+५
इस लिये यहां महत्तमापवर्तन य-य+१ यह है।
उदा० (४) १२य - ४८ य+३९ य+यर और ६य - २० य +५७ ५३ -- ४५ यदुन का महत्तमापवर्तन क्या है? - ग्रहां दोनों उद्दिष्ट पद ३य से निःशेष होते हैं सो ऐसे १२ य५ - ४८ य + ३९ या + य =३ यर (४ य-- १६ य+ १३य +३), ६य-२७ य+५७ य३ --- ४५ ५२ = ३यर (स्य- य+१९य-१५) ।
.:. यहां ४ य - १६ य+१३ य+३ और २य -- ८ य + १९ य-१५ ये लघुपद हैं इन का परस्पर में भाग देने के लिये न्यास,...
For Private and Personal Use Only
Page #107
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
समावर्तन |
२
२६ – ९य े + १ल्थ – १५) ४८ – १६८१ + १३८ + ३ ( ४०३ - १८८२ + ३८०-३०
३ का भाग देने से
२० - २५६ + ३३,
फिर, २ - २५+३३) २८३ - ९ य े + १९ य - १५ ( य + ८
य.
२३ - २५८ + ३३ १६८२ - १४ य - १६८२ - २०० + २६४
- १५
१८६ य - २०९
•
२य - ३) २८२ - २५ य + ३३ ( य.
२८२ - ३ य
- २२ य + ३३
२२य +३३
Acharya Shri Kailassagarsuri Gyanmandir
c
( अपफ) यर (अघप
इस लिये यहां २ - ३ यह लघुपदों का महत्तमापवर्तन है और .. ३य े (श्य - ३) बा, ६ य-य, यह उद्दिष्ट पदों का महत्तमापवर्तन है ।
.११.
उदा० (५) य + (-घ) थ े - (अघ + क) य + कध और
पयरे - (पघ - फ) य - घफ इन का महत्तमापवर्तन क्या है ?
न्यास | य + (- घ) य - (अध + क) य + कघ
प
पथ ३ + ( प - घप ) थ े - (अधप + कप) य + कप
पथ - ( पद्य - फ) य - घफ) पयः + (अप - घप ) घर - ( घप + कप ) य + कथप (घ
पथ
(पघ - फ) यर - घफय
घफ + कप) य + कघप
For Private and Personal Use Only
प
पयर - (पघ-फ) य - घफ) (अप - पफ) - (अघप - घपफ + कप ) य + कप (अप - फ ( अप * - पफ ) य - ( अघ - अधफ - घपफ + फ) य- अधपफ +घफ - ( अपफ + कप-फ) य + श्रधपफ + कचव - घफर
(अपफ + कप - फ) इस का भाग देने से
Page #108
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । 4-घ) पय- (पघ - फ) य -- घफ (पय + फ।
पयर-घपय
+फय-फ
+फय-घफ
-
:. यहां य- घ यह महत्तमापवर्तन है।
उदा० (६) अ+३ अक+२ कर-२ अग -कग - ३ग और ३ अर + अक --२ क +8 अग-कग+गर इन का महत्तमापवर्तन क्या है?
यहां उद्दिष्ट पदों को सुधार के पहिले पद का दूसरे में भाग देने से A+(३क-२ग) अ+रकर-कग-३ग) ३+(क+४ग)अ-२कर-कग+गर (३
अ+एक-६ग)अ+६कर ३कग-गर
-(-१०ग)अ-८कर+रकग+१०गर - (क-१० ग) इस का भाग देने से अ+क+ग) + (३क-२ग) अ+२कर-कग - ३ गर(अ+२ -३ग
अ+ (क+ ग)
(२क-३ग) +२कर-कग-३ गरे (२क-३ग) +२कर-कग-३गर
:. यहां अ+क+ग यह महत्तमापवर्तन है।।
अभ्यास के लिये और उदाहरण । (१) य+श्य+६ और य+६+दन का महत्तमापवर्तन क्या है?
उत्तर, य+२। (२) य+य - २० और यर- ११य +२८ दून का महत्तमापवर्तन क्या है?
... उत्तर, य-४।
For Private and Personal Use Only
Page #109
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । (३) २३+७ य+६ और य+य-२ इन का महत्तमापवर्तन क्या है?
उत्तर, य+२। (४) यर+७ य-८और य३-४ य+१०य-७ इन का महत्तमापवर्तन क्या है? - उत्तर, य-१।
(५) य- य+ १४ और २य-य-११ य + १० दून का महत्तमापवर्तन क्या है?
उत्तर, य-२। (E) य+१३य+ ३६ और ५य + १३ य२-२६ य+दन का महसमापवर्तन क्या है?
उत्तर, य+४। .. (७) य-- ४ य२-२६ य+ ३५ और य-- ११ यर + २९ य - ७ इन का महत्तमापवर्तन क्या है?
____ उत्तर, य-७। .
(5) य+३ य-१८ य और ३ य-१३ य + १७ य - १५ इन का महत्तमापवर्तन क्या है?
उत्तर, य-३ । (९) य+ या+२५ य+२५ और य+८य१८य+ १५इन का महत्तमापवर्तन क्या है? _. उत्तर, य+५।
(१०) य+२ यर-८यर + ५२ और य - ३ यर+५ यर - ३ र दून का महत्तमापवर्तन क्या है?
उत्तर, य-र। (११) २१-१७ य+ २२ य-७ और ३ य - २३ यर +१८ य-२८ दुन का महत्तमापवर्तन क्या है? .. उत्तर, य-७।
For Private and Personal Use Only
Page #110
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
महसमावर्तन |
(१२) अरे अरे - ६ करे और
मापवर्तन क्या है ?
उत्तर,
-२क ।
(१३) ३८ – ३५ ८२ + ६० दून का महत्तमापवर्तन क्या है ?
उत्तर, य -६ ।
३
३ क + ४ करे इन का महत्त
Acharya Shri Kailassagarsuri Gyanmandir
- १५० और २६ - ०६२ - ४० + १०२
(१४) य + अय – २० + १८ और य + १३ अ + ४० य - १२ अरे इन का महत्तमापवर्तन क्या है ?
-
उत्तर, य+६ ।
(१५) य३ – ५६२ – १९२ और घ३ - ५० य - ५६ इन का महत्तमापवर्तन क्या है ?
उत्तर, य - ६।
(१६) २८२ + ३.६१ - ३८-९ और २ + ३६८-६ न का महत्तमापवर्तन क्या है ?
उत्तर २८-३।
(१२) ६ – २ – १७८ + ४२ र ९६ - ४९ य दून का महत्तमापवर्तन क्या है ?
उत्तर,
३८+७।
(१८) ३ य े + १६८-७४ य + ६५ और ६० - ३१ य े + ६५ – ५० दून का महत्तमापवर्तन क्या है ?
३८- ५ ।
उत्तर,
(१९) २०२ – ९६ – ८१-५२ र ३ घरे + १७.६२ + ३० य + २८ इन का महत्तमापवर्तन क्या है?
उत्तर,
य + ४ ।
For Private and Personal Use Only
Page #111
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । (२०), १८३+३३ १२-१०५ य और १६ य+३२ यर-८४ य इन का महत्तमापवर्तन क्या है?
.... उत्तर २य + ७ य । ... (२१) ३य + ४ -६य + २७ यर और ४३+१४ +३३. - य इन का महत्तमाप्रवर्तन क्या है?
उत्तर, य+३ य । " (२२) ६य+२३यर+१६ यर-३ और क्य-३यर-- यर+३ इन का महत्तमापवर्तन क्या है?
- उत्तर, . २ +३र।
(२३) य+य +१३ य+५ और य+ य + १० यर-२१ यइन का महत्तमापवर्तन क्या है?
उत्तर, य+३ य+१। (२४) य+य+१० +१३य+६३ और य-य+२१२२-४६ य+१८ इन का महत्तमापवर्तन क्या है? ... उत्तर, यर-२य+ ।
. (२५) २५-७ य+६ +१४ य+ ३२३ और ३य -१० य-य + १२५ य +९२८ इन का महत्तमापवर्तन क्या है ?
उत्तर, य-७ + १९ ।
(२६) ३ +२य - १६ य+२३ य+२४ और य+ य +१२ यर --१४ य - १५ बन का महत्तमापवर्तन क्या है?
उत्तर, य+३। (२०) ४य +३२ यः + २८ यर- १६० य और ३५ + ६ य-यर +१०५ य दन का महत्तमापवर्तन क्या है?
उत्तर, य+५य ।
For Private and Personal Use Only
Page #112
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
समावर्तन |
୯
(२८) ११५ – १४ य* + + २ र ४८५ ५ य* + १ इंन का मह
तमापवर्तन क्या है ?.
उत्तर ( य - ५) २ ।
उत्तर, य
२२
(२९) ४८३ + १४ य े + - १५ और ६* + ८ + १४८२ -८८ - १५ इन का महत्तमापवर्तन क्या है ?
उत्तर
(३१) अ
1
www.kobatirth.org
-----
(३०) २६६ + य' +०+६ और २६ – ३६ + १ इन का महसमापवर्तन क्या है ?
(य +१) ।
१।
- १६८२ + ३८ य
-
-
Acharya Shri Kailassagarsuri Gyanmandir
६४ क + ५४ - ४५ क और + ४ क १०० र ७५ क इन का महत्तमापवर्तन क्या है ?
२२
क- १५ क ।
उत्तर,
(३२) १० ८ + २५ ८३ - २९८२ - ३५ य + २१ और १५८४ - २० ८३ ७ इन का महत्तमापवर्तन क्या है ?
५०२ - ७ ।
उत्तर,
-
(३३) अ – ४ अ + ३ य' और ' + अय आय + ७ यदून का महत्तमापवर्तन क्या है ?
उत्तर, २ - २ अथ + य ।
(३४) ६ यर + ५ - ५ १३ + १९ घर* - ५११ और "य" + ६यर - १५ यश् + घर " ।
उत्तर, २२ + ३ घर - ₹ 1
(३५) ५+१३ क + अ + २१ करे और २ क + १० + १३ अ ेक + ३ क दून का महरुमापबर्तन क्या है?
उत्तर,
अ + ३ क ।
For Private and Personal Use Only
Page #113
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । - (३६) १५ य° + ३५ य+शय १ और २५ य+५९ य+ ३६ यः - य + १ इन का महत्तमापवर्तन क्या है ?
उत्तर, (य + १)३ । (३७) ६अ - ११ अय+१३ अश्य - ३७ अघ +४१ अय' - १२ यः और अय+३२ अश्यः -१६ अय' + ४३ अय' -२० या दून का महत्त मापवर्तन क्या है?
उत्तर, ४ अ +२ अय + ७ अय-४ यः । (३८) २ य-५ यर +३ यर - यर' + ३ यर - ८ यर + ३र और ५ -७ यर + ५ यर- य३+५ य* -- २य + ४ इन का महत्तमापवर्तन क्या है? - उत्तर, य - या + यर- या +र।। ____ (३९) अय + (अच- क) य- (कच - ग) य + गच, और पयः + (पच+क) य२+ (फच-ब) य-बच दून का महत्तमापवर्तन क्या है?
उत्तर, य+च । (४०) अई-कर-२ अकग+ अग२-२कग-२कगर- अगर- गरे और अ- अक-अक+क-अग-अगर+करेंग+ कग+ ग दून का महत्तमापवर्तन क्या है?
उत्तर, अ-क-ग।
४६ । नो उद्दिष्ट पदों के गुण्यगुणकरूप खण्ड शीघ्र हो सकते हों तो उन का महत्तमापवर्तन निकालने का प्रकार दूसरा । ___ दोनों उद्विष्ट पदों के अलग २ खण्ड करो तब पहिले पद के खण्डों में जितने खण्ड दूसरे पक्ष के खण्डों में होंगे उन का गुणनफल उद्विष्ट पदों का महत्तमापवर्तन होगा। __ उदा० (१) अ-२ अक+अकर-२ कर और अ२-४ कर इन का महत्तमापवर्तन क्या है?
For Private and Personal Use Only
Page #114
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । यहां, अई-अक+अकर-२काअर (अ-२क)+कर (अ-२क)
= (अ+ कर) ( -२क) और अ-४ क = (+२ क) (अ-२ क) ।
अब हर एक पद के खण्डों में अ-२ क यह खण्ड है इस लिये यह उद्दिष्ट पदों का महत्तमापवर्तन है।
उदा० (२) य-र और य - र इन का महत्तमापवर्तन क्या है? यहां, य-र = (य+र) (य३ - २३)
= (य + र) (य२.- यर + र) (य-र) (य+यर+र), और य - र" == (य + र) (य-र) = (य+र) (य+र) (य-र)। :: यहां (य + र) (य - र) अर्थात् य-र यह महत्तमापवर्तन है।
उदा० (३) अ + कई और अ+ अक+क इन का महत्तमापवर्तन क्या है?
न्यास । अ + क = (अर-अक+कर) ( +क) और अ+अक+ क = अ +२ अक+क' - अकर
___= (अ+ कर)२ – (अक)२
= (अ+ अक+कर) (अर-अक+कर) :: यहां अ- अक + क यह महत्तमापवर्तन है।
उदा० (४) य-३ यर +२रऔर य+ यर-घर इन का महत्त. मापवर्तन क्या है?
न्यास । य-३ यर +२र = य--२ यर-यर +श
= (य-२ यर)- (यर -२र२) = य (य-२र)-र (य-२२)
= (य - र) य-२२), और य२ + यर-६ = य+३ यर-२ घर-घर
= (य+३ यर) - (२ यर +६२२)
= य (य+३र)-र (य+३र) = (य-२र) (य + ३र)। :: यहां य--२र यह महत्तमापवर्तन है।
For Private and Personal Use Only
Page #115
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
. महत्तमापवर्तन । उदा० (३) य+ (प + फ) य+ पफ और यर- (२ क-फ) य-२ कफ इन का महत्तमापवर्तन क्या है?
न्यास य+ (प+फ) य+ पफ य+पय+ फय+यफ
= य (य+प)+फ (य+प) == (य+फ) (य+4) और यर-(२क-फ) य-२ कफ = यर-२कय + फय--२ कफ
= य (य-२क)+फ (य-२क) = (य+फ) (य-२क)। :: यहां य+फ महत्तमापवर्तन है।
उदा० (६) अ+२ अक+कर- गरे और अर-कर+२ अग+गर इन का महत्तमापवर्तन क्या है? न्यास। २+२ अक+कर- ग = (अ+क)२- गरे
=(अ+क+ग)(अ+क-ग), और अर-कर+२ अग+2== + अग+गर-क= (+ग)-कर
= ( +क+ग) (अ-क+ग)। .. यहां अ+क+ग यह महसमापवर्तन है।
अभ्यास के लिये और उदाहरण । (१) अय-अयऔर अय+अयन का महत्तमापवर्तन क्या है?
उत्तर, अश्य + अयर। (२) य+५ य+६और य+६ + इन का महत्तमापवर्तन क्या है? - उत्तर, य+२
(३) अरे - ८अ + १५ करे और अ- १० अ+ २१ कर इन का महत्तमापवर्तन क्या है? ___उत्तर, अ-३ क ।
(४) य+२ अय-३५ अ और य-२५ अइन का महत्तमापकर तन क्या है?
उत्सर, य-५ ।
For Private and Personal Use Only
Page #116
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । (५) + ४ अक +३ कर और प्र + क दन का महत्तमापवर्तन क्या है?
उत्तर, ग्र+क। (६) य' - य२-२य-१और य+य+१दून, का महत्तमापत्र. सन क्या है..
उत्तर, य+य+१। (७) य% - १. और यः -- य- य + १ इन का महत्तमापवर्तन क्या है?
उत्तर, य -१। - (८) य३-३ यर+यर-३र३ और य-र" इन का महत्तमापवसन क्या है?
उत्तर, य+र (९) अ - २ अ.-४ और अ+8: दून का महत्तमापवर्तन क्या है? ___ उत्तर, अ+२ +२। (१०) य+ ८ और य' + ४ य+ १६ इन का महत्तमापवर्तन क्या है? ___ उत्तर, य--२ य+४ ।
(११) अरे- करे और अ+ (क+ग) अ+कग इन का महत्तमापवर्तन क्या है?
__ उत्तर, अ+क। (१२) ३२-२ यर+र-ल और. य-
१ २ यल+लर दून का महत्तमापवर्तन: क्या है?
उत्तर, य-र+ल। (१३) अर+कर-ग+२ अक औरः अरे+करे+ग+३ अग +३ अगर इन का महत्तमापवर्तन. क्या है?
उत्तर, अ+क+ग। (१४) अ + करे-गर-घर-२ (अक - गघ) और अ-कर+गर - -२ (अग - कघ) इन का महत्तमापवर्तन. क्या है?
उप्तर, प्र-क-ग+घ।
For Private and Personal Use Only
Page #117
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१००
महत्तमापवर्तन । (१५) प +फ + बरे +भ + ३ (पफ + पफर + बरंभ + बभ) और प + क + बरे + भ + ३ (पब+पर+फ भ + फभर) इन का मह. तमापवर्तन क्या है?
उत्तर, प+ फ+ब+भ । (१६) य१६ - २१६ और य१२ - २१२ इन का महत्तमापवर्तन क्या है?
उत्तर, य-र । ५० । तीन वा अधिक पदों का महत्तमापवर्तन निकालने की रीति । · पहिले दो पदों का महत्तमापवर्तन निकालो फिर वह महत्तमापवर्तन और तीसरा पद इन का महत्तमापवर्तन जानो । ऐसा हि विधि फिर भी जितने पद होंगे उतनी बेर करो फिर अन्त का जो महत्तमा. पवर्तन होगा सो हि उद्दिष्ट पदों का महत्तमापवर्तन है।
इस को युक्ति इस भांति स्पष्ट होती है।
मानो कि अ, क और ग ये तीन उद्दिष्ट राशि हैं और सोचा कि अ और क इन का महत्तमापवर्तन घ है और घ और ग इन का महत्तमा. पवर्तन च है तो च यह अ, क और ग इन का महत्तमापवर्तन होगा। ___ क्योंकि तो ऐसा न हो तात अ, क, और गइन का महत्तमापवर्तन छ हो तो यह अ और क इन को निःशेष करनेहारा (४३) वे प्रक्रम के दूसरे अनुमान से घ को भी निःशेष करेगा और ग को नि:शेष करता हि है इस लिये च को भी निःशेष करेगा और छ यह च से बड़ा माना है सो इसी को निःशेष करता है यह असंभव है इस लिये अक और ग इन का महत्तमापवर्तन च ही है इस से बड़ा और दूसरा कोर नहीं हो सकता।
इसी भांति चार वा अधिक उद्दिष्ट पदों के महत्तमापवर्तन निकालने में भी युक्ति जानो।
उदा० (१) अग+कग,अक+कर और अ-कादून का महत्तमा. पवर्तन क्या है?
For Private and Personal Use Only
Page #118
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
महत्तमापवर्तन । यहां अग + कग और अक+करे इन का महत्तमापवर्तन +क है और अ+ क और अ- कर दन का महत्तमापवर्तन अ+ क है इस लिये यह उदिष्ट पदों का महत्तमापवर्तन है ।
उदा० (२) अ-३ अय - अय+३य, अ- अय-५ अय+६य और २ ३ - ३ अय-८ अय- ३ य इन का महत्तमापवर्तन क्या है ? न्यास । ३-३ अश्य-अय+३३३) अ - २ अय-५ अय+६(१
अ-३ अश्य- अय+३३ य का भाग देने से
अय - ४ अय+३य अ- ४ अय +३ य) -३ अश्य - अय+३ य (अ+ य
अ- ४ अय+३ अयर
अन्य - ४ अय+३३ अय-४ अय+३
इस लिये अ-४ अय + ३ यर यह पहिले दो पदों का महत्तमापवर्तन है। अब यह महत्तमापवर्तन और तीसरा पद इन का महत्तमापधर्तन निकालने के लिये न्यास । अर-३ अय+४२२)२ अ-३ अश्य- अय-३ यः (२+५य
२ -८ अरेय+ अयर - ५अश्य-१४ अयर-३ यः
५ अय-२० अय+ १५ यरे
२-१८य
६य का भाग देने से, अ-३ य) -- ४ अय + ३ (अ-य
अर-३ अय
-अय+३यरे -अय+३यर
-
.
-
For Private and Personal Use Only
Page #119
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१०९
महत्तमापवर्तन । .: यहां अ-३य यह उद्दिष्ट तीन पदों का महत्तमापवर्तन है।
अभ्यास के लिये और उदाहरण । (१) य+य-२, य-१ और यर-२ य+१ इन का महत्तमायघर्तन क्या है ?
उत्तर, य-१ (२) +६ + ११य +६, य + ७ 4 + १४ य+८ और यरे + य+२६ य + २४ इन का महत्तमापवर्तन क्या है?
उत्तर, य+२। (३) अ +२ अक +२ अक+कर, अ+अक+क और अ-करे इन का महत्तमापवर्तन क्या है ?
__ उत्तर, अ+अक+क।
(8) अ-२ अक-८ अकर, २ अ + अक + १० अकर और २३+अरक-२६ अकर-४० को इन का महत्तमापवर्तन क्या है?
उत्तर, अ+२क। (५) अ+करे, अ+क', अ+क और अ+क दुन का महत्तमापवर्तन क्या है?
उत्तर, अ+क। (६) ६ -११ अय-३ अय+रयरे, +३ अय-११ अयर-६यर और ६अ + १९ अय+२ अय- यः इन का महत्तमापवर्तन क्या है ?
उत्तर, २ +य। (७) २४ य-- ४६ य+२९ य-६, ३० य - ५६ य+३८ य-८और ६०३३ - १५३ य+९८ य - २४ इन का महत्तमापवर्तन क्या है?
उत्तर, ३य-२।। (८) य२र, य३-२, य' - र, य-1 और य-६ दून का महत्तमापवर्तन क्या है?
उत्सर, य-र।
For Private and Personal Use Only
Page #120
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
लघुतमापवर्त्य ।
१०३ (ह) २ य+ यर -१० यर-२१ यर + १२२४, य+५यर +यर-१५ यर – १२र और २य + यर-७ यर-३ यर +३२ इन का महत्तमापवर्तन क्या है?
उत्तर, य-३२। (१०) २ अ --- ५ अ + ५ अ-२,४ अ --५ +१और ४-१ अरे + अ +३ अ-२ इन का महत्तमापवर्तन क्या है ?
उत्तर, २ -३ +१। (११) ४ य-८ यर+४ यर-र',४३% - य +४ यर -२" और ४ य +र इन का महसमापवर्तन क्या है?
उत्तर, २यर-२ यर+र। (१२) अ+५अक+५ २-५अक -६क', अ + प्रक -७ कर अक: +६क', '+४ अक-अरकर -१६ अकरे --१२ और अ+२ अक-७ अका-८ अ + १२ क दून का महत्तमापवर्तन क्या है?
उत्तर, अ+३क। ___ (१३) अक + अग+ अ +२ अकग+ अग+कग+कग', अ+२ अक+२ अग+ अ +३ अकग + अग+ ग + कग और अक+अग+कर+३ अकग+२ अग+को+कग+गदून का महत्तमापवर्तन क्या है?
___ उत्तर, +ग।
२ लघुतमापवर्त्य । ५१ । जो दो वा अधिक पद जितने पदों को निःशेष करते हैं उतने पदों में जो सबसे छोटा पद है उस को उन दो वा अधिक पदों का लघुतमापवर्त्य कहते हैं।
५२। दो पदों का लघुतमापवर्त्य निकालने की रीति ।
For Private and Personal Use Only
Page #121
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१०४
www.kobatirth.org
लघुतमापवर्त्य ।
उद्दिष्ट दो पदों के गुणनफल में उन पत्रों के महसमापवर्तन का भाग देओ जो लब्ध होगा वही उन पदों का लघुतमापवर्त्य है ।
इस की उपपत्ति ।
यहां पहिले यह सिद्ध करना चाहिये कि दो पदों का उन के लघुतमापवर्त्य में अलग २ भाग देने से जो लब्धि आवेंगी वे परस्पर दृढ होंगी ।
-
Acharya Shri Kailassagarsuri Gyanmandir
1
जैसा । जो अ और क इन दो पदों का लघुतमापवर्त्य ल हो और अप और ल कफ हो तो प और फ ये दो लब्धि परस्पर दृढ
ल
होंगी ।
क्या कि जो ऐसा न हो अर्थात् प और फ इन का भी साधारण अपवर्तन द हो जैसा कि प= दपे और फ = दफे तो ल = अदपे = कदफे | इस से स्पष्ट है कि द इस साधारण अपवर्तन का जो अदपे वा कदफे इस लघुतमापवर्त्य में भाग देओ तो भजनफल अपे वा कफे (जो लघुमापवर्त्य से अवश्य छोटा चाहिये) अ और क इन दोनों पदों का साधारण अपवर्त्य होगा । परंतु यह असंभव है क्योंकि पत्रों का लघुतमापवर्त्य वही है जो उन के साधारण अपवर्त्य में सब से छोटा है तब उस से भी छोटा उन का साधारण अपवत्यं क्यों कर होगा ? इस से सिद्ध हुआ कि प और फ ये दोनो लब्धि परस्पर दृढ होंगी ।
=
अब मानो कि अ और क इन का महत्तमापवर्तन म है और तम और क थम तो ल = अप तमय और ल कफ थमफ इस लिये तमप = थमफ वा तप = थफ होगा। अब ऊपर सिद्ध किया है कि परफ ये परस्पर दृढ हैं और त और थ ये भी परस्पर दृढ हैं क्योंकि ये और क इन को दही के महत्तमापवर्तन से निःशेष करने से लब्ध हुए हैं।
अब तप
11
थफ इस से स्पष्ट है कि थफ यह प से निःशेष होता है और प यह फ से दृढ है इस लिये (४४) वे प्रक्रम से य यह प से
For Private and Personal Use Only
Page #122
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
लघुतमापवर्त्य
१०५
निःशेष होगा। इसी भांति तब यह य से निःशेष होता है औरत और थ परस्पर दृढ हैं इस लिये प भी थ से निःशेष होगा ।
.. अक्र लभ .:.
www.kobatirth.org
अब, प और थ इन दोनों में हर एक दूसरे से निःशेष होता है इस से स्पष्ट है कि प और थ ये दोनों परस्पर समान हैं अर्थात् प थ इस लिये क = अपम, और ल
थम, वा क = पम वा चक्र
= अप
प्रक
भ
== ल ।
अनुमान १ । जो दो पद परस्पर दृढ हैं उन का गुणनफल उन दो पदों का लघुतमापवर्त्य है ।
==
अनुमान २ | दो पदों का महत्तमापवर्तन और लघुतमापवर्त्य इन दोनों का गुणनफल उन दो पदों के गुणनफल के समान होता है ।
Acharya Shri Kailassagarsuri Gyanmandir
उदा० (१) २ य और ३ कर इन का लघुतमापवर्त्य क्या है ? यहां २ अय और ३कर ये परस्पर दृढ हैं इस लिये इन का महत्तमापवर्तन १ है,
: लघुतमापवर्त्य
=
२० x ३ कर
१
उदा० (२) ४ अय और ५ अथ इन का लघुतमापवर्त्य क्या है ? यहां उद्दिष्ट पदों का महत्तमापवर्तन अथ है ।
. लघुतमापवर्त्य
उदा० (३) य े–र' और यह इन का लघुतमापवर्त्य क्या है ?
यहां य े र े = (य+र) (य-- र) और
-
४ २ ४५ प्रय
अय
६ प्रकयर ।
२०. अ२८२ ।
य३ – ३ = ( + यर + र े) (य-र) 1
इस लिये उद्दिष्ट पत्रों का महत्तमापवर्तन यहै,
For Private and Personal Use Only
Page #123
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१०६
य
+
र
लघुतमापवर्त्य ।
(य+र) (य-र) x (य+यर+२) (य-र) :: लघुतमापवर्त्य = (य+
य-र = (य+र) (य+यर+र) (य-र)
= (य-२२) (य+यर+r) = य+यर-य-र। उदा० (४) य२- यर-हर और य-२यर- दून का लघु. तमापवर्त्य क्या है? यहां उद्दिष्ट पदों का महत्तमापवर्तन य+२र है,
.. (य-यर-६२) (य-२यर-२) :: लघुतमापवर्त्य = ___ य-यर-दर
Jx (य-२यर-कर) _य+र = (य-३र) (यर-२यर-दर) = यः-५ यर-२यर+२४ ।
अभ्यास के लिये और उदाहरण । (१) २१अकीय और २८ अकाय इन का लघुतमापवर्त्य क्या है? ___ उत्तर, ८४ अकय । (२) २१ (अ+य) और १४ (अ-य) इन का लघुतमापवर्त्य क्या है ?
उत्तर, ४२ (ब-या)। (३) १८ अकर (य-र)२ और ३० अक(य-र)३ दून का लघुतमापवर्त्य क्या है?
उत्तर, अक' (य-र)। . (8) अ+क और अ-क इन का लघुतमापवर्त्य क्या है ? __उत्तर, अरे- करे।
(५) ३य-२र और ६५+५यर-६२, इन का लघुतमापवर्त्य क्या है?
उत्तर, य+५यर-घर।
For Private and Personal Use Only
Page #124
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
लघुतम
|
(६) २८१+थ-३ और ३८२ - य - २ इन का लघुतमापवर्त्य
क्या है ?
www.kobatirth.org
क्या है ?
उत्तर,
६०३ +७८२ - ०२ - ६ ।
(७) अ े +2 अ + २ और च े - २ + २ इन का लघुतमापवर्त्य क्या है ?
उत्तर,
+
(१०) ३८ – ८ लघुतमापवर्त्य क्या है ?
उत्तर,
Acharya Shri Kailassagarsuri Gyanmandir
उत्तर
' +४।
(८) २८ - यर-र और य - ४ यर + ३१' इन का लघुतमापवर्त्य क्या है ?
उत्तर, २- ७यर +२यर' +३१३ ।
(९) अ° – ४कर और
-
- २२ - ४ करे - ८ ।
+०८- २ और २८ - २ - ४
1
अक - ४ करे इन का लघुतमापत्र
६४ - ०३ - १०८२+१७य - ६ |
१०७
(११) २८३+३-६६ + ३ और ५८३ + १४ - य + ६ इन का लघुतमापवर्त्य क्या है ?
+ ३ दून का
}
उत्तर १० ८५ + १३६ – ३९८ + २२ - १९८ + ६ |
-
For Private and Personal Use Only
(१२) २३-५८+६३ और ६०३ +१६+६ - १ इन का लघुतमापवर्त्य क्या है ?
उत्तर, ८ + २३८ + ४२८-३७ ।
-
(१३), ४ अ' + १३अ + ९ अ२ – १६ और ४ अ' – ह े + ३४ – १६ दून का लघुतमापवर्त्य क्या है ?
उत्तर ८६ + १२ – २' +२१+४+४८- ६४ । (१४) – य ेर + यर- १४ और य' + यर + य©t’+ य°r+ यर*+x' इन का लघुतमापवर्त्य क्या है ?
उत्तर, य-र ।
Page #125
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१०८
लघुतमापवर्त्य । (१५) य+ २३+२य - ४ य-८य-८ और य-२ य+२५ - ४ य-य-८ इन का लघुतमापवर्त्य क्या है ?
उत्तर, य-१६ । ५३ । तीन वा अधिक पदों का लघुतमापवर्त्य निकालने की रीति ।
पहिले उद्दिष्ट पदों में कोई दो पदों का लघुतमापवर्त्य निकाला फिर वह लघुतमापवर्त्य और शेष पदों में से कोई एक पद इन दोनों का लघुतमापवर्त्य जानो साहि फिर जितने शेष पद हो उतनी बेर करो तब अन्त में जो लघुतमापवर्त्य होगा वह अभीष्ट लघुतमापवर्त्य है। . इस को सिद्ध करने के लिये पहिले यह सिद्ध किया चाहिये कि जो दो राशि जिस किसी तीसरे राशि को निःशेष करते होंगे उस तीसरे राशि को उन दो राशिओं का लघुतमापवर्त्य भी निःशेष करेगा। • जैसा माना कि अऔर क ये ला को निःशेष करते हैं और इन का लघुतमापवर्त्य ल है तो ल भी ला को निःशेष करेगा।
क्यों कि जो ऐसा न कहो तो मानो कि ला में ल का भाग देने से फ लब्ध होता है और श शेष बचता है अर्थात् ला= फल + श ।
तब पतान्तरनयन से, श= ला- फल । इस से स्पष्ट प्रकाशित होता है कि जब अऔर क ये दोनों ला और ल को निःशेष करते हैं तो वे श को भी निःशेष करेंगे और श तो ल से अर्थात् अ और क इन के लघुतमापवर्त्य से छोटा माना है उस को क्यों कर निःशेष करेंगे? इस लिये ला में ल का भाग देने से शेष कुछ न रहेगा अर्थात् ला निःशेष होगा यह सिद्ध हुआ। _ इस को रेखागणित के सातवें अधाय के (३५) वे क्षेत्र में भी रेखाओं से सिद्ध किया है। ___ अब मानो कि अ और क इन का लघुतमापवर्त्य ल है और ग और ल इन का लघुतमापवर्त्य ला है तो ला यह अ, क और ग इन का लघुतमापवर्त्य होगा। ...
For Private and Personal Use Only
Page #126
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
लघुतमापवर्त्य ।
१०९ क्यें। कि जो २ राशि अ और क इन से निःशेष होगा सो २ ल से भी निःशेष होगा। इस लिये ल और ग इन का जो लघुतमापवर्त्य है वही अ, क और ग इन का लघुतमापवर्त्य होगा। - इसी भांति चार वा अधिक पदों का लघुतमापवर्त्य निकालने में भी युक्ति जानो।
इस को रेखागणित के सातवे अध्याय के छत्तीसवें क्षेत्र में विस्तार से सिद्ध किया है। __ अनुमान । जो अनेक पद ऐसे हों कि उन में कोई दो पद परस्पर अदृढ न हों उन अनेक पदों का गुणनफल उन का लघुतमापवर्त्य होगा।
उदा० (१) अक, कग और ग इन का लघुतमापवर्त्य क्या है? .. यहां पहिले दो पदों का महत्तमापवर्तन क है । इस लिये उन दो
अकxकग पदों का लघतमापवर्त्य = = अग
अब यह लघुतमापवर्त्य और गई यह तीसरा पद दन का महत्तमापवर्तन ग है
.. अकरेग
गरे
इस लिये अभीष्ट लघुतमापवर्त्य = = अमगरे ।
उदा० (२) २ यर-५ य+२, २य + य -१ और यर-य-२ इन का लघुतमापवर्त्य क्या है?
यहां पहिले दो पदों का महत्तमापवर्तन २य-१ यह है इस लिये उन दो पदों का लघुतमापवर्त्य = -
(२यर-- ५ य+२) (२ य+य-१)
२य-१
= २य-३ य-३ य+२ अब २ यः -- ३ य२-३ य+२ यह लघुतमापवर्त्य और तीसरा पद इन का महत्तमापवर्तन य-य-२यह है इस लिये .
For Private and Personal Use Only
Page #127
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
सधुतमापवयं ।
. (२ य-३२-३ य+२)(य-य-२) सभीष्ट लघुतमापवर्त्य = -
यर-य--२
=२यरे-३३-३५+२ । उदा० (३) अरे-२ अक+कर, अरे- कर और अ - कर दून का लघुतमापवयं क्या है?
यहां अ-२ अक+ 2 == (अ-क) और अर-कर- (अ+ क)(अ.-क) इस लिये पहिले दो पदों का लघुतमापवर्त्य (अ-क)२ (अ+ क) यह है।
और अ - क = (अ + अक + कर) (अ.- ) इस लिये अभीष्ट लघुतमापवर्त्य = (अ+अक+कर) (अ-क)२ (अ+क) = अ- अकर- अरेक + कर
अभ्यास के लिये और उदाहरण । (१) ६य+य-२,८य-६य+१ और १२ य+५य--२ इनः का लघुतमापवर्त्य क्या है?
उत्तर, २४ य-२ य- य+२॥ (२) २ अ + ७ - १५, ४ अ + २१ +५ और ८ अ - १० अ-३. इन का लघुतमापवर्त्य क्या है?
उत्तर, ८ + ३० अर+५३ अ-१५ । (३) यर-२,य+यर+यर+र और य३- य +यर -२ वून का लघुतमापवर्त्य क्या है?
उत्तर, य-र । (४) अ२-३ अक+२ कर, अर-कर और अ+३ अक+२ कर दून का लघुतमापवर्त्य क्या है? ___ उत्तर, अ - ५ अकर+४ क ।
(५) य+२ य, य+य-३य और य+३५ --य-६ इन का लघुतमापवर्त्य क्या है?
उत्तर, य+३य-यर-६य।
For Private and Personal Use Only
Page #128
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
लघुतमापवर्त्य । (E) य- १, य-४ य+ ३ और य-इन का लघुतमापवर्त्य
उत्तर, य-१० य+ (७) ६ अर-१७ +१२, १२ अ-३१ +२० और २० अ-४ +३० इन का लघुतमापवर्त्य क्या है। ___उत्तर, १२० अ-६३४ अ+ १२५३ अरे- १०९८ + ३६० । (5) ४ अ + १, ८ अ + ८ अ + अ - २१२-२ -१ और अ-८ अ+ ४ अ-२ अ+२-१दून का लघुतमापवर्त्य क्या है?
उत्तर, १६ -१। (e) य-य-8 य+8, य+२ य-य-२, य + य२-४ य-४ और य३ - २ य-य +२इन का लघुतमापवर्त्य क्या है? . उत्तर, य- ५ य+४।
(१०) +२ क + ४ अक +'क', -२ अ + अक' --८क, +२ अक + २ मकर - ४ अक - ८अ - ८ क और अ-२ अक+२ अकर-४ अक' + अक -८क इनका लघतमापघयं क्या है?
उत्तर, -१६ क । ५४ । जो बहुत से पद ऐसे हों कि उन में कितने एक दो वा अधिक पद परस्पर अदृढ हों तो उन २ परस्पर अदृढ पदों को उन के २ अपवर्तन से अपवर्तित करो जिस से वे पद अन्त में ऐसे हो जावें कि उन में कोई दो पद परस्पर अदृढ न रहे तब इन सब दृढ पदों के गुणनफल को उन अपवर्तनों से गुण देओ। वह गुणनफल उन बहुत पदों का लघुतमापवर्त्य होगा।
जैसा । अक, करंग और ग इन का लघुतमापवर्त्य जानना है ।
तब अक, कग और गई दून में पहिले प्रथम दो पदों को क का अपवर्तन देने से अ, कग और गई ये पद हुए । फिर इन में दूसरे और
For Private and Personal Use Only
Page #129
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
११२
लघुतमापवर्त्य ।
तीसरे पद को ग का अपवर्त देने से अ, क और ग ये सब परस्पर दृढ पद हो गये । अब इन का गुणनफल अगर है इस को का और ग इन अपवर्तनों से गुण देने से अकग x x = करे गरे यह गुणनफल अक, कॉँग और गरे इन का लघुतमापवर्त्य है । (५३) वे प्रक्रम में पहिला उदाहरण देखो |
इस की उपपत्ति । अन्त के सब दृढ पदों का गुणनफल (५३) वे प्रक्रम के अनुमान के अनुसार उन दृढ पदों का लघुतमापवर्त्य है | परंतु अपवर्तन देके दृढ किये हुए पदों का लघुतमापवर्त्य भी अपवर्तित होगा । इस लिये उस लघुतमापवर्त्य को उन अपवर्तनों से गुण देने से गुणनफल अनपवर्तित पदों का अर्थात् उद्दिष्ट पदों का लघुतमापवर्त्य होगा । यो उपपन्न हुआ |
अब जहां दो वा अधिक उद्दिष्ट पदों में हर एक पद के दृढ गुण्यगुणकरूप अवयव तुरंत जान सकते है। वहां उन पदों का लघुतमापवर्त्य जानने के लिये लाघत्र का और अत्यन्त सुगम यह नोचे लिखा हुआ प्रकार ऊपर की उपपत्ति के आश्रय से उत्पन्न होता है ।
उद्दिष्ट पदों को एक पंक्ति में लिखो फिर उस में जिस किसी दृढ पद से अनेक पद अपवर्त्य हो उस भाजकरूप दृठ पद को पंक्ति के भाजकस्थान में लिख के उस से जितने उद्दिष्ट पद निःशेष होंगे उतने पदों की लब्धियों को उन २ पदों के नीचे लिख दे और जो पद निःशेष न होंगे उन को अपने २ नीचे लिख देओ । इस से एक दूसरी पंक्ति उत्पन्न होगी फिर इस का पूर्ववत् एक दृढ पद भाजक कर के तीसरी पंक्ति उत्पन करो । और ऐसा फिर २ तब तक करो जब तक किसी दृढ पद से पंक्ति में अनेक पद निःशेष होने के योग्य न रहें तब सब भाजक और अन्त के पंक्ति में जो पद बचे हों उन सभों का गुणनफल सिद्ध करो। वह गुणनफल उद्दिष्ट पदों का लघुतमापवर्त्य होगा ।
उदा० (१) १५, १८ अ, और २० इनका लघुतमापवर्त्य क्या है ?
For Private and Personal Use Only
Page #130
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
११३
न्यास ।
२). ३) ५)
१५
लघुतमापवर्त्य ।
१८ १५अ अ ५ अ ३ अ
१० अर १० अर
- .:. २४३४५xx३.x२ = १८० गर यह अभीष्ट लघतमा. पवर्त्य है।
उदा० (२) ३ य+३ घर, ३ य-३ यर, ३ य२-३१और यो-यर इन का लघुतमापवर्त्य क्या है? न्यास । ३) ३ य+३ यर, ३ य-३
य) य+ या, य-- यर, घर- र, य३ - यार, य+र) य + र, य - र, यो- र, य- र,
। । । ।
.: ३४ य x (य+र) x (य-र) = ३ य-३यर, यह उदृिष्ट पदों को लघुतमापवर्त्य है।
अथवा इस में हर एक पंक्ति में जो २ पद किसी और पद में निःशेष होता हो उस २ निःशेष करनेहारे पद के नीचे एक रेखा करो और उस को छका हुआ समझो। फिर शेषः पदों में आगे उक्त प्रकार से क्रिया कर के लघुतमापवर्त्य निकाला। वही अभीष्ट लघुतमापवर्त्य होगा। इस से क्रिया में बहुत लाघव होगा । जैसा ऊपर के उदाहरण में।
३) ३ +३ घर, ३ यर-३यर, ३ य-३२२, य- घर, ___य) य+यर, य-यर, यर-२, य-यरर, य+र य-र
या-र .. ३४ य ४ (A२-) = ३ - ३.या यह लघुतमापवर्त्य है।
For Private and Personal Use Only
Page #131
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
११४ .
लघुतमापवर्त्य ।
अभ्यास के लिये और उदाहरण । (१) अय + अर और अय- अर इन का लघुतमापवर्त्य क्या है ?
उत्तर, अयर-अर। (२) + य और (अ+य)२ इन का लघुतमापवर्त्य क्या है ? . उत्तर, अ + अश्य + अयः + य ।
(३) २ अक, २ अय-२ अर, २ कय -२ कर और अकय -- अफर इन का लघुतमापवर्त्य क्या है?
उत्तर, २अकय-२ अकर ।। (४) ६अ, ३ अक, अक (य-र) और ३ क (३२-२१) इन का लघुसमापवर्त्य क्या है?
उत्तर, ६अक (य-र)।
(५) अय + अयर, अश्य-अय९, अ- अयर और अश्य-य३ इन का लघुतमापवर्त्य क्या है?
उत्तर, अश्य-अयः ।
(६) य-८, य+८य + १५ और य+२ य - १५ इन का लघुसमापवर्त्य क्या है?
उत्तर, य+५५२- य-४५। (७) य-४, य२-३६ और य+8 य-१२ इन का लघुतमा. पवर्त्य क्या है?
उत्सर, य-४० य+१४४।। (E) अ-क, अर - क और अ-करदन का लघुतमापवर्त्य क्या है?
उत्तर, अ + अक-अक -क (E) य-र,(य- १)और य-र दून का लघुतमापवर्त्य क्या है ? उत्तर, य-य -
य र
For Private and Personal Use Only
Page #132
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
૧૧
लघुतमापवर्त्य (१०) य+३ +२, य+४ य+३ बार लघुतमापवर्त्य क्या है?
उत्तर, य+६ य+ ११य+६ ।
(११) अर-कर, अ + करे और अ-क इन का लघुतमापवर्त्य क्या है?
उत्तर, अ-अक+अकर- अक' + अक-क।
(१२) (अ-क) (अ-ग), (अ-क) (क-ग) और (अ-ग) (क-ग) इन का लघुतमापवर्त्य क्या है ?
उत्तर, (प्र-क) (अ-ग) (क-ग)।
+५ रन का लघत.
(१३) ३ अ-३, ४ अ +४ और ५ अ+५ मापवर्त्य क्या है?
उत्तर, ६० -६० ।
(१४) (य+अ) (य+क) (य+ग), (य + अ) (य+क) (य+घ); (य+अ) (य+ग) (य + घ) और (य+क) (य + ग) (य + घ) बन का लघुतमापवर्त्य क्या है?
उत्तर, (य+ अ) (य+क) (य+ग) (य+घ)।
(१५) +१, अ-१, अ-१ चोर अ-१ इन का लघुतमापवयं क्या है?
उत्तर, अ+ अ + अ - अर-अ-१।
और य+t' इन का
(१६) य+र, य-र, य+र, य-र लघुतमापवर्त्य क्या है ?
उत्तर, २० - २ यर+३ य२-३ य +aur-३ य +२यर-1 ।
+२
-२यर
For Private and Personal Use Only
Page #133
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
ሃገር
यहां (५२)
लघु महत्तमापवर्तन और लघुतमापवर्त्य के साधारण प्रश्न |
(१) जिन दो पदों का गुणनफल य + ६ यह है और महत्तमापवर्तन य + २ हैं उन दो क्या होगा ?
वें
प्रक्रम के
www.kobatirth.org
अनुसार 1
* + + २३ य + ३० + १२
य+२
Acharya Shri Kailassagarsuri Gyanmandir
-
+ २३८ + ३८ + १२ पदों का लघुतमापवर्त्य
इस लिये य’+६य' + ११ + ६ यह उन दो पदों का लघुतमापवर्त्य हैं।
+ ६ + ११ यं +६
(२) जिन दो पेदों का महत्तमापवर्तन य+र और लघुतमापत्रयं य + यर – यर – ३ है और उन दो पदों में एक पद पर है तब दूसरा पद क्या है ?
wy
यहाँ (५२) प्रम के दूसरे अनुमान से महत्तमापवर्तन और तमापवर्त्य इन दोनों का गुणनफल - (य+र) (य + यर-यर य* + २यर - २ र ३ - ४
यह उन दो पदों का गुणनफल है ।
* + २५ - २ र ३ -
For Private and Personal Use Only
लघु
(३)
=
य' + २वर+र' यह दूसरा पद है !
Page #134
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
११०
अध्याय ४ ।
इम में बीजात्मक भिन्नपद का व्युत्पादन, भिवपदों का रूपभेद, उन का संकलन और व्यवकलन, गुणन, भामहार, घामक्रिया, मलक्रिया और प्रकीर्णक इतने प्रकरण हैं।
१ बीजात्मक भिन्नपद का व्यत्पादन । ५५। जो बीजात्मक पद परा नहीं है अर्थात जो अवयव वा अवयव से मिला हुआ कोड पूर्ण पद है उसको भित्रपद कहते हैं। इस से स्पष्ट है कि भिन्नपद कोइ पर्ण भाज्य भानकों का भजनफल है जो भाज्य भाजक से निःशेष नहीं होता।
भिवपदसम्बन्धि भाज्य को अंश वा भाग कहते हैं और भाजक को छेच वा हर कहते हैं।
भिवपद जिस पदार्थ की जात का होगा उस पदार्थ के उतने समान विभाग करो कि जितनी केव की संख्या हो फिर अंश की संख्या जितनी होगी उतने वे विभाग ले के उन का योग करो वह उस भिवपद का मान है अथवा अंश की संख्या जितनी होगी उतने भिन्नपद की जात के पदार्थों का ऐक्य कर के छेद की संख्या जितनी होगी उतने उस ऐक्य के समान विभाग करो उन में एक विभाग उस भित्रपद का मान है।
५६। जिस भित्रपद में अंश और छेद परस्पर दृढ हैं वह उस का लघुतम रूप है।
५७। जो अभिनय क्रिमी भित्रपद मे जुडा हु.मा वा घटा हुआ है उस को मिश्रपट कहते हैं । यह दो प्रकार का होता है । एक भागानुबन्ध और एक भागापवाह ।
For Private and Personal Use Only
Page #135
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
११८
भित्रपद का व्युत्पादन । (१) जो अभिवपद भिवपद से जुड़ा हुआ है उस को भागानुबन्ध कहते हैं । जैसा, अ++ __(२) जो अभिवपद भित्रपद से घटा हुआ है उस को भागापवाह कहते हैं। जैसा, अ-क।
५८। मानो कि अदस भित्रपद का न्योतक य है अर्थात य= अतो (१८) वे प्रक्रम के दूसरी प्रत्यक्ष बात के अनुसार दोनों पक्षों को क से गुण देने से कय = अ और भी इन दोनों पक्षों को म से गुण देने से
मकय= मन ......................................... (प्रा)
(१) अब (आ) इस के दोनों पक्षों में क का भाग देने से,
मय = मत्र अर्थात् मx= मजा। इस से स्पष्ट प्रकाशित होता है कि जो किसी अभिनपद से भित्रपद के अंश को मात्र गुण देओ और छेद को वैसा हि बना रहने देवो तो वह उस भित्रपद और अभिन्नपद का गुणनफल होगा । (२) (ग्रा) इस के दोनों पक्षों में मक का भाग देने से
य = मग अर्थात = मय इस से स्पष्ट प्रकाशित होता है कि किसी भित्रपद का अंश और छेद इन दोनों को किसी एक हि पद से गुण के बढ़ा देने से वा भाग देके छोटा करने से उस भित्रपद का मोल बिगड़ता नहीं ।
५६ । और भी जब कि अ अ = २१ = ३१ = मन = --मत्र - तो इस से स्पष्ट है कि कोई अभिवपद भिवपद के रूप का हो सकता है, और किसी भिवपद का अंश और छेद इन दोनों के चिह्नों को पलट देने से उन भिवपद का मोल नहीं बिगड़ता।
For Private and Personal Use Only
Page #136
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
२ भिन्नपदों का रूपभेद ।
६० । भित्रपद का एक रूप से वा नाम से दूसरे रूप वा नाम में ले जाने के प्रकार को रूपभेद कहते हैं । भिचपदों का संकलन, व्यवकलन, इत्यादि के लिये पहिले इस को अवश्य जानना चाहिये ।
उदा० (१)
६१ । किसी भिन्नपद का लघुतमरूप, जानने का प्रकार ।
उद्दिष्ट पद का अंश और छेद इन दोनों का महत्तमापवर्तन निकाला अभीष्टरूप के अंश के लिये उद्दिष्ट पद के अंश में इस महत्तमापवर्तन का भाग देओ और अभीष्टरूप के छेद के लिये उद्दिष्ट पद के छेद में भाग देओ ।
इस की उपपत्ति
जब कि भित्रपद का अंश और छेद इन दोनों में एक हि पद का भाग देने से उस का मोल नहीं बिगड़ता तब उद्दिष्ट भित्रपद का अंश और छेद इन दोनों में उन्हों के महत्तमापवर्तन का भाग देने से उद्दिष्ट पद का मोल न पलट के उस के अंश और छेद परस्पर दृढ़ होंगे अर्थात् वे और छोटे नहीं हो सकेंगे इस लिये वह उद्दिष्ट भित्रपद का अभीष्ट रूप होगा ।
- कर
अरे - करे
न्यास । जब कि
इस का लघुतमरूप क्या
उदा० (२)
Acharya Shri Kailassagarsuri Gyanmandir
- क
इस लिये यहां अंश और छेद इन
(अ + क) (अ अरे - क (अ + अ + करे ) ( का महत्तमापवर्तन
इस का उन दोनों में भाग देने से
+ क
+ क + क
१४ घर - ११ यर + २२
श्
+ १६ घर - ६१
?
For Private and Personal Use Only
११८
क)
- क)
- क है
यह लघुतमरूप है।
इस का लघुतमरूप क्या है ?
Page #137
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१२०
freaों का रूपभेद |
यहां अंश और छेद का महत्तमापवर्तन ०८ - २१ है,
१४८२ - ११ यर +२₹२
०१ + १८यर - ६१२
२५- र
य+३र
उदा० (३)
(१)
(२)
अ + २ क + कर २-अक-२ कर -३ कग
(३)
(8)
अ अक
खे
यह लघुतमरूप
क्या है ?
यहां अंश और छेद का महत्तमापवर्तन + क + ग है,
३६ अभ्य
४५ २३
ह१ (
७७ (अ
(श्र
अ + क
1=
++ क-ग
२कर - ३ कग -
अरे - प्रय
(घ) २
४ अ
क) २
३
-
यह स्मरण रक्खा कि इस के अनन्तर जहां भित्र पद से गणित करना होगा वहां उस के स्थान में उस का लघुतमरूप लेओ और गणित में जो अन्त में फल उत्पन्न होगा उस को लघुतमरूप देओ । क्यों कि लाघव सर्वत्र अपेक्षित है ।
अभ्यास के लिये और उदाहरण |
५ य
'य' - ४ य + ४
a2-8
www.kobatirth.org
(१४८२ - ११ घर + २₹) : (य--२१) ( ० + १८यर - ६१ ) ÷ (७८- २र)
है 1
ग
WH
1
- ग
च
१३
११ (क)
प्र + २ क + क
क + कर
(+य)
य
-
अ + क-ग
२क - ग
-
थ -२
य +
ग
Acharya Shri Kailassagarsuri Gyanmandir
1
I
इस का लघुतमरूप
For Private and Personal Use Only
यह लघुतम रूप है
1
Page #138
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१२५
भित्रपदों का रूपभेद। अर-२ -१५ +8 अ+२ -३५ अ+ ' य+४ यर +३र य+३९
य+यर- य-र' १२ यर - यर-३५ घर ३ य+५य
२८यर-हर अयर-कर अय+कर अश्या - कर अय+अकयर + कर
य–३ य +२ य+२ २ यः-३य+१ २य+१
य-१४ यर(११) य+यर- यर।
अ+अक+ + अक+कर
अ + करे = अ+क । ३ य३-११ यर+१२ य-४ ३यर-५ य+२
२य - य-य-१० २य+३+५ १५ अ + ३ अक-१० अकर-२ र ३ अ-२कर ३५ अ + २२ अक+३ क अ + ३ क
अ- यः अ-य +२ सय +२ अय+ य +4
य+४ यर-२+२ २३-२य -४ य-२ य-यर +२ य -या +र य-यर+र य+यर+२य + यर+र य+यर +र
र य+२ +१ ३ +२ +१ 1) हय - ४ य+४ -१ ३ य+२ य-१
For Private and Personal Use Only
Page #139
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवपदों का रूपभेद । ६३३ - ४ यr-१५ यर+१०३ ३य-२र ४ ३३+६यर-१० या- १५३ २५+३र य+ (अ-ग) य-अग य+अ य+ (क-ग) य-कग य+क य+र-ल+२यर य+र+ल य२-र-ल+रल य-र+ल'
अ + अक+अकर-करेंग-कग२- गई अ-ग अ- करे +२ अग+ अकग +२ अगर + ग अ-क+ग'
तयः + (अत+द)+ (अद+कत)यर+कदर तय+दर ' अय+ (अर-ब) यर-(अब-अक) यर-बकर अय-बर'
(
हर। मिश्रपद को भिन्नपद का रूप देने का प्रकार ।
भागानुबन्ध वा भागापवाह के भिन्नपद का छेद और अभिन्नपद इन के गुणनफल में भिन्नपद के अंश को क्रम से जोड़ वा घटा देने से जो बनेगा सो अभीष्ट भित्रपद का अंश होगा और मिश्रपद में जो भित्रपद का छेद हो वही अभीष्ट भित्रपद का छेद होगा।
इस की उपपत्ति ।
मानो कि अ++ इस मिश्रपद का द्योतक य है अर्थात् य = अ+ तो समों को सम से गुण देने से, गय = अग+के :: य= अगक, वा, अग अग क यो उपपत्र होता है।
अकरे उदा० (१) अ- अक+ इस को भित्रपद का रूप देओ ।
म
+
क
अकर (अर-अक) (अ+क)+अकर न्यास। अर-अक+'अ+क
+क -क) (+ क) + अकरे (अर-कर)+प्रकर अ +क
+क
अ
For Private and Personal Use Only
Page #140
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
- अकर + क
+ क
उदा० (२) प्र
न्यास । F
(१) अ
---
(३) य
अ + अकर - क + करे
अ + कर
क
(२) अ + +
(४) ३ य
अ +
8+
(६) य - २+
(५) य +२+
(८) +२क
ऋ - करे
अ + करे
श्र
francों का रूपभेद |
न + क
(७) २ + ७ क
www.kobatirth.org
य + अ
अकर करे
+ कर
अभ्यास के लिये और उदाहरण |
+ क) (
क)
३
थ +
क
य+५
२य +०
यर + ६
य - ३र
इस को भिन्नपद का रूप देओ ।
P
+ क
क
य
य + अ
३ + करे
+ क
य
य +२
क + १४ कर
३+२क
करे (-६क) अरे - ३ कर
।
( + कर)
य
1
Acharya Shri Kailassagarsuri Gyanmandir
६ य े + १४ - २३
२+७
३र
अ + क
For Private and Personal Use Only
1
६ ( + ४ क ३. +२क
(अर - करे)
२
अ + अक - ४ क
२-३ कर
१२३
Page #141
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१३४
(c) य े + पर + r° +
(१०) य +
(११) अ + क
T
+
--
(१२) य+र - ल -
1
(१६) १+
(१७)
(१३) १+ अ + अ +
frasi का रूपभेद ।
www.kobatirth.org
य
३६-२२
य
य - ₹ य - र
क +
(१४) २-३ थ - य +
अरे (२५ अथ + २ )
C
२
+ ३८२
(१८) य+र+प
(a2 + ac + c2) (a2 — at +c2)
a2+2
(१५) अ (य+र) + क +
(अ
१२- ल
य+र+ल
अ
क (२ + क)
- ग
२ क
क
अ
१
+ करे
२य+३=
Acharya Shri Kailassagarsuri Gyanmandir
चा क
1
घ (य+२८)
य+र+ल
र +कर + ग
यरे (७+३य)
अ – २ अय + ३८१
-
I
1
For Private and Personal Use Only
प्रय + कय +ग
र
( + क+ग) ( + क-ग) - ग
थ 1
य + १३ घर - ६१२
३८
२र
र+पर+फ
य+र
क + गरे)२
(१९) अग
8 ग्रम
( + क + ग) (+क-ग) (अ + ग - क) (क + ग - अ)
1
४ अग
1
1
+ (२+प) य - फ
य + र
Page #142
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१२५
भिवपदों का रूपमेद
(य -ल-वर)२ (२०) यर+ लव--
४(यर+ लव) __ (य+र+ल-व) (य+र+a-ल) (य+ +
४ (यर + लव)
-)(+ल+ब-य)
- ६३। भिवपद को मिश्रपद का रूप देने की प्रकार ।
भिन्नपद को मिश्रपंव का रूप देने के लिये केवल भिनपद के अंश में उस के छेद का भाग देओ जो लब्धि पावेगी बह अभीष्ट रूप है।
१५ अय उदा० (१) इस को मिश्रपद का रूप देओ।
१५ अयाय न्यास । -- = अय+ यह मिश्रपद है।
५य-३यर - १२२ उदा० (२) -
- इस को मिश्रपद का रूप देओ ।
५य+
र
न्यास । ५ य+२२)५३२-३ यर - १२२ (य-t
५५+२यर
-५यर - १२१ -५ यर - २
-१० र
..य-र-
यह मिश्रपद है। +३१
५
(अ-क+ग) य उदा० (३) ----------- इस को मिश्रपद का रूप देओ।
(प्र-क+ग)य (क-ग) य न्यास । ---
अ = य- - यह मिश्रपद है।
For Private and Personal Use Only
Page #143
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रपदों का रूपभेद । अभ्यास के लिये और उदाहरण ।
७
+२०
२० = अ+२।
३५ अर+१४ अय+8 यर
-----
४यर
=५
+
२
+
---
।
५य-१० यर+३२
BR
य
-
य-२र+
।
य
२
+
क
२+
क
अर-अय+
घ३ --- -।
+ य
+
- +य +क'
- + क
अ
+
अ-अक+अकर-करे + -
- । क
मर-य-
+-
--
!
य
।।
. य+य
य (य+१) (य-१) + -
==
+
-
---
=य+५र
र (४ य-१३र)
य-३२
र (य-३२) ३य+५२
य+५ यर-७ यर-२१३ .
य२-३ ६३-२१यर+यर-३३ .
.३ य५ 4-७ य+यर-या३+५२ (११) --
____ य+३ यर + 7 र (९७ य+६७१) य+३यर+
For Private and Personal Use Only
Page #144
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१२७
भित्रपदों का संकलन और व्यवकलन । अ+ अक्र-अकरे +क'
- = अ + अक-अकर
(१२)
अ+करे
कर (२ अ-अक-कर) ।
अ+कर
+५
अ-२ अ +३२-४
६ +५--
(
+
+
)२
+
+
+क)३
४कर (३ अ-क) + क+ -
(अ-क)२ . ' र
र३ (अ ) अर
का (अ+कर) । अ क३= अ- अकरे+
' अ+करे । अर--- २ अक+क-अग-गर
ग (क-ग) अ-क+ग
. अ-क+ग अय+कयः + गय+घय+च
-=अयः + (अप+क) यर य-प
अप+कप+गप+घप+च। +(अप+कप+ग)य+(अप+पर+गप+घ)+
य-प
३ मिन्नपदों का संकलन और व्यवकलन ।
६४। भित्रपदों का संकलन वा व्यवकलन करने के लिये पहिले इन पदों के छेदों को समान करना चाहिये उस का प्रकार यह है ।
उद्विष्ट पदों के छेदों का जो लघुतमापवर्त्य होगा उस में हर एक उद्विष्ट पद के छेद का भाग देने से जो २ लब्ध होगा उस से अपने २ अंशों को गुण देओ घे गुणनफल समच्छेद पड़ों के अंश हैं और वह लघतमापवर्त्य हि सब समच्छेद पदों का छेद है।
For Private and Personal Use Only
Page #145
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
य
१२८ भित्रपदों का संकलन गरि व्ययकलन ।
अब संकलन की यह रोति है कि पहिले उद्दिष्ट पदों को समच्छेद करो फिर उन समच्छेद पदों के अंशों का योग करो वह अभीष्ट योग का अंश है और जो समच्छेद पदों का छेद है वही अभीष्ट योम का छेद है। __ और व्यवकलन की यह रीति है कि पहिले उद्दिष्ट पदों को समय च्छेद करो फिर उन में जो पद वियोजक हो उस के अंश को वा अनेक वियोजक हों तो उन के अंशों के योग को वियोज्य में वा वियोज्यों के योग में घटा देने से जो शेष बचे वह अभीष्ट अन्तर का अंश है और जो समच्छेद पदों का छेद है सो हि अभीष्ट अन्तर का छेद है।
दूस की उपपत्ति ।।
मानो किम और च इन पदों का योग करना है और मानो कि इन पदों के द्योतक क्रम से य, र, और ल ये तीन पद हैं अर्थात्
र , और ल= चतो
- य+र+ल- + + अब मानो कि क, घ और छ इन छेदों का लघुतमापवर्त्य म है और एन में छेदों का अलग २ भाग देने से क्रम से त, थ और द ये लब्द होते हैं। तो ऊपर के दोनों पक्षों को म से गुण देने से,
(य+र+ल) म = अम + म + चम अथवा (य+र+ल) म= अत + गथ + चद :: य+र+ ल धा, + I + = अत+ गय+चद । इस से संकलन की रीति की उपपत्ति स्पष्ट प्रकाशित होती है। इसी भांति व्यवकलन की रीति की भी युक्ति जानो।
यहां जिन पदों का योग या अन्तर करमा है उन में जो कितने एक अभिवपद वा मित्रपद हो तो वहां मियपदों का योग वा अन्तर
For Private and Personal Use Only
Page #146
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवपदों का संकलन और व्यवकलन। १२९ करने के लिये पहिले अभिचपदों का योग वा अन्तर कर के उस में भित्रपदों के योग वा अन्तर को जोड़ देओ। इस से क्रिया में बहुत लाघव होगा।
५य ४या. इय उदा० (१) और इन का योग क्या होगा? यहां छेदों का लघुतमापवर्त्य ८४ है,
:. ५यx9% ३५य)
४य ४४ = १६य ये तीन क्रम से समच्छेद पदों के अंश हैं,
१६य
और ८४ यह लघुतमापवयं हि समच्छेद है, ३५य १६य
- और ये समच्छेद पद हैं, '८४८४
५य ४य ३य ३५य १६य त्य :. उद्विष्ट पदों का योग = + -+- +- +
१२३१ २८ ८४ ४ ४ ३५य+ १६ य+ य ६०य ५य .
-
.
अथवा पहिले जिन पदों के छेद छोटे होंगे उन का योग करके फिर उस में शेष पदों में जिस का छेद छोटा होगा उस को नोड़ देओ ऐसा हि फिर भी करो।
___५य ४य ३य
जैसा
+
+ २८
४याय
३४.
२९
For Private and Personal Use Only
Page #147
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवपदों का संकलन और व्यवकलन । १/३५+५६य ३य १.५१ य : ३ये
- १७य ३य
२० य
५य
६
३५-२२ य+ र. १३यर उदा० (२) ------- + --------
१० १५ '३. (५य-1) (३य-र स्य+३२) १३यर २
३ '३०५य-र) १ (३ (३ य-२२)+२ (२+३र)) १३ यर
३० (५य-र) १(य-घर+४+६र) १३ यर
*३० (५य-र) _१ १३५ १३ यर १३य, १३यर ५ ६ * ३० (५ य-र) ३० '३० (५५-1) १३ य (५ य-र) १३ र ६५५२-१३ यर + १३ यर ३०(श्य-र) ३० (५य-र) ३० (५य-र)
६५ यर १३यर - ३० (५ य-र) ६(५५-र)'
उदा० (३)
- और
इन का योग क्या है ?
दरल
१४यन
२१
...
१
न्यास
'रल '१४ यल '१यर ४२यरल' ४२ यरल 'याल
७य+र+२ल
-
यात- = उदिष्ट पदों का योग।
उदा. (४!
-
और
-इन का योग क्या है? य
अ
+
For Private and Personal Use Only
Page #148
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवपदों का संकलन और व्यवकलन । अ+य अ-य (+य)२+ (अ-य)२ अ-य +य (प्र-य) (अ+य) अ+२ अय + २ + अर- अय+यर २ (अ+यर)
अ - यर
उदा. (५)
२(१+य) '३(१-य) '१+यर
+.
+
-..------
२११+ १-या १ (१-य+१+य) २ (१+ 2) (१-य),
+यर
१ +यर
२५-यर' + यर ५-२ १+य' १+या+१-या २ १-यर) (१+य) १-य*
श्य ..३य उदा० (६) दस में दस को घटा देओ।
५य ३य २५य १य २५य-१य ४य . ५ ३५ ३५ ३ ५ ३५
उदा० (७) ------
इस में
इस को घटा देगा।
य+११
१ १ अभीष्ट अन्तर - --
य-१ य+१
य+1- (य-१) (य-१) (य+ १)
य+
१-य+१
(य-१) (य+१)
यरे -
घ+
१
य+
२
+
३
For Private and Personal Use Only
Page #149
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिधपदों का संकलन और व्यवपालन । य+२-(य+१) १ य+२-३-१ १ (य+ १) (य+२) 'य+३ (य+१) (य+२)'य+३
१ य+३+ (य+१) (य+२) (य+१) (य +२)' य+३ (य+१) (य+२) (य+३)
य++य+३ +२ य+४ य+५ (य+१) (य+२) (य+३) (य+१) (य+२) (य+३)
य-.
उदा. (९) घर-४ य+ +४ य+6 य+४ य+:- (य२-४ य+6) य+४ +६-य+ (य२-४ य+5) (य' + ४ य+)
य+६४ स्य +६४
अभ्यास के लिये और उदाहरण ।
य १७य श्य
३३
-
+
+३क अ-४क १३-१९क
७ ३ .२१ २य+५र इय-र १३३२+३२ यर+३'
य+र '५य+र ५य+११ यर +२ ३ +२क ३ -२क २(३ -२ )
+ क ' अ-क अ-कर य+र य+ र
यर (२) य+र'य-६र ३-४ यर- ११
३य-५ २५+५ ३यर (६) + (य + १)२ (य+१)र
-
+
For Private and Personal Use Only
Page #150
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(घ)
(c)
(१०)
(११)
(१३)
(१३)
(१४)
(१५)
(१६)
(90)
第十
थ+
१
freusों का संकलन र व्यवकलन
अ+9
च - १
.
२८ - १० यर + ५₹२
१५ य - पर
२८२
+
(क)
३य +२
२०.
if य.
२
य + २
थ - १
- 12
११ य + ४
३६
+
१२ (य +१) ३
२ क ३+क
१०
१४
क)
(अ + क)
श्न + कः
यः + १
३+३ अथ
羽
www.kobatirth.org
य:
४
५
२२य + ४
+
य+ २ य (य-४)
--
14
३य ÷४
(य +१) (य +२)
२)
क
य-र
५८- २६
थ +३
+
४. क
+
-
२ (य - १)
४५
य.
-
४ (य- ३)
३ + क
३५.
+ ६ क +
Acharya Shri Kailassagarsuri Gyanmandir
२ाकर + क
य - २६
३.य+र
य+र
य-र
२ य
यर + घर + इ 'घरे-घर + य +१+
२ क
२
३य+१
क्ष्
For Private and Personal Use Only
११ य - १६ य -- २४ +६)
T
३ (य- ४ य +
男子气
(य- १) (य - २) (य + ३)
+%
S
-
१६३
।
Page #151
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
외관상
(१८)
(पंह)
(२०)
(२१)
(२३)
==
(२४)
(२५)
fraपदों का संकलन और व्यवकलन |
२८
१
य + २६
२ (य +१)
-
अ क
--
-ग) (क+ग)
अ + क A
२
XX
-
+ २
-
२
+
घ +
(अ + + करे)
४ - क
+
२य + २६
थ + १
३ य + ५
-- क
* + ४ क
क + २ कर
क + २ कर
+
+
४ य
www.kobatirth.org
अ क + 8 क
य - १
य+२+२
+
-
२ (५य - १८)
३य (य - ६)
२८ + १
+
+
य - ३
२८२ - २१य + ५४
१
२६- ७५
२ (य + ३)
+
+
अ
+
क - ग
+
२ (घ - १)
पूर ८२ - ४३
(३य + ५) (२८ - २) (५य - ३)
+ क)
४-७५
२+३
४
५ य
२+२ कर
+२+२ क
३
--
य + १
- २य +२
Acharya Shri Kailassagarsuri Gyanmandir
३ य
(य+१) (घ+२) (य +३)
ग)
૧
For Private and Personal Use Only
२४ य
(य+१) (श्य+१) (२८+३)
२य (य े + ४)
य* + ४
य+२
५
+ य' + य ३ (२ य
第十路
+ क) (क + ग)
-
+ ९)
1
१
य + १
}
Page #152
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
मिषपदों का संकलन पार व्यवकलन। ... १३५
३ २ - ४ य+१० य +२० (२८) य+२ य+8२ – -२' +4-८५-६
२य (य + १) य' + य .८५-८'
३(२य+१) ' रय+३) '२१ (४ य
४य (४ य+५) ३ (२ य + १) (२ य.+B) (४ य:- १) ' अक अग+कर
कग (अ-ग) (क-ग) '(--क) (क-ग) ' (अ-क) (अ-ग)
अक+अग+कग . (अ-क) (क-ग)
।
य+र' य+ यर +र 'य- २- यर + २(य+य + य +यर -२
य - .+३ य+४ य+gi+१६ यर-२ +४ य-२ य+8 'य- ४ य+ १६ ' य+२ +8
य' -४ य+१६ ४ (य+४ +१६ य+६४ य+ २५६) *य + ४ य+ १६ य+ १६ य + २५६
सय ३य य य ५य-१ २य-५ ४य+१३. (३१) १५-१०-६-१५ और -६=१८
३य-र य+र य (७ य -र) २य-र ३य+र ६१२-- यर- ' य+२ २(य+१)
य य+१ २ य+ (य+१) (२य+१).
For Private and Personal Use Only
Page #153
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रपदों का संकलन और व्यवकलन । य (२ य-र) २य+. (य- २ - (- '
(२०)
२(
क)
अ-क
+क
म+
+
का
IR
भा
-का
र
य+र
३य (३६),
-
७य १२ ।
२य+३
.
_
य+
१
य
+
य
..५ अ+९क ४
अ - कर अ+क य + 9
य-१ १२-४ य+८ य+४ +
२(५ + )
य +६४
(
८करे
+२क ७) अ+२ +२कर
मर-अक+शकर
+४क
प्र
१
५
.
४
१२ ४ (-३) (अ-४) २ - ३२ -१ ( -५) (अ+३) ( -१) :
य-१७ य-- (य-) (-४) (य-३) ।
+
३
(४३) - + य-
य-य+१
९००) य+ +१' यर-य+१
२ यर (य-य- १)
य +य +१
For Private and Personal Use Only
Page #154
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
-
०५
भित्रपदों का संकलन और व्यवकलन । य+१. य-२ य+३ य+१० य+३२ य-२'य+३ +२ य+३यर-४ य-१२ : (अ-य)३ (अ-य)२ अ-य अ-अय+अय+य' (अ+य)३' (अ+य)२ अ+य अ+ य+अ+य' १ २ . १
२ अ+क +२ +३क (+क)(अ+रक)(अ+12)
(४७) का
१
(१८) ८८(य+१३)
' ८८(य+१३)
२४ (य+५) '३३(य+२)
.
(य+१३) (य+५) (+२)
१
-
--
त्य
य-१
२(य--२)
य (य-१) (य-२)
य+२
य+३
+४
(य+२)(य+३) (य+४)
"
अर-१ अ (A+१)
य+५ य-य-६
अ+१ अ अ (अर-१) -१ २ +१ य-१ य+य-२ य-४ य+३
३३-२३२-५
+६
२
+
३
(
३ +१ -३) (अ-२) (-३) (अ- १) (-२) (अ- १)
(च-३) (
-२) (
-१)
For Private and Personal Use Only
Page #155
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१३६
(५४)
(99)
+
(५६)
(५७)
+
(५९)
(६०)
+
(५८)
(घ- र) (य-ल) (य- घ)
(य-ल) (र-ल) (ल
य - ३
य+१
अ (ऋ
fransों का संकलन और व्यवकलन |
(क) (अ
+
Matheate
+ (प
---
क + + घ
य + ३
य+१
+ य - १ य ३
ग (ऋ ग) (क - ग)
--
क ग)
यरल
१
-क) (अ-ग)
१
(त- थ) (त- द )
www.kobatirth.org
-ग) (अ
यद + थध + दध
यर + पथ + फ
य (य- र) (य – ल)
फ
फबभ
ब) (फ
--
फ) (प- ब) (प
पफभ
We
a)
तथ + तथ + थध
(त- द) (थ - द) (द - ध)
NAG
घ)
घ)
क (अ
१
अकग
ध)
भ)
ब) (ब - भ)
( य - र) (र
---
य
१
य + ३
(त
क
Acharya Shri Kailassagarsuri Gyanmandir
-
घ) (र
१
र+पर+ फ
र (य- र) (र-ल)
For Private and Personal Use Only
ल) (र
१
ब) (ल
६४ य
य - १०६२ + ¢
अ + क + ग
घ) (क-घ) (ग
ग्र + ग + घ
(क
-
+
-ग)
तद + त + दध
थ) (थ द) (थ - ध)
तथ + तद + यद
'
(त- ध) (थ - ध) (द - ध)
- a)
ग) (क घ)
पत्रभ
ल + पल + फ
ल ( य-ल) (र
(फ-ब)
पफत्र
(प-भ) (फ - भ) (ब
भ)
फ.
11 १।
Page #156
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१३९
रग,
४ भिन्नपदों का गुणन । ६५। रीति । गुण्यगुणकरूप पदों के अंशों का गुणनफल अभीष्ट गुणनफल का अंश है और छेदों का गुणनफल अभीष्ट गुणनफल का छेद है।
इस की उपपत्ति ।
मानो कि और इन दो पदों के द्योतक क्रम से य और र हैं अर्थात् य = अ और र=, तो कय = अ, और घर = ग,
कघयर = अग :: यर वा अx = अग यह सिद्ध हुआ । इसी भांति तीन वा बहुत पदों के गुणन में युक्ति जानो।
८अया. १५अक उदा०(१)
१६ यार इन का गुणनफल क्या होगा?
दायर १५ अरक अयx १५ अक गुणनफल
हकर १६यर कर x१६ यार १३० अकया १४ करमा३ अश और छेद इन दोनों में
हकर
फ
न
-
X
--...
-
---
२४ ऋय का भाग देने से =
उदा० (२) --------- भार
६क्रय+
-इन का गणनफल क्या है। क
-
-
X
-----
४ अय+
६ ४ -८ गुणनफल =
५५-१० कय+ क २ (२ य+३) ४ (य-२)
५(य-२) इक (२य+३) २अ (२ य+३) 8 (य-२) ५(य-२) ३ का (२ य+३) १५क'
-
% 3D
For Private and Personal Use Only
Page #157
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिचपदों का गुणन । (अ-क) ( +क). पर+प्रक+कर उदा० (३)
३ ३आर - इन का गुणनफल (अ-क)x (+क)३ ४ (अ+ अक+कर)
(अ+कर) (अ-क) (अ-कर) ( क) (प्र-क) (अ-क) ( +क)(अ+क) (+क) (अ+ क+कर) (a+क) (१२-अक+क)(अ-क) (अ+अक+कर)(अ+क) (अ-क) (अ-क) (अ+क) अ-कर १२-अक+कर १२-अक+कर'
यर ५अय
२ उदा० (४) ++ +
२य अ इस को - इस से गुण देओ।
पहिले (३०) वें प्रक्रम में (५) वें उदाहरण में जिस भांति गुण्य के नीचे गुणक को लिख के गुणन का प्रकार दिखलाया है उसी प्रकार में यहां भी न्यास करो।
यर ५अय और
-
२य अ र: BR
या अयर ४ अय और + + 7 ___ अयर अय असे
हर ११ ३२५ या ४३ अयर ४३ अय
३२ + १८ + १ ३१५ अथवा पहिले गुण्यगुणकों को सर्णित करने से
४ +१५ चयर +२४ अरे. यर-.
For Private and Personal Use Only
Page #158
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१४१
भिवपदों का गुणन। और फिर एन का गुणन करने से ४ यार+१५ अयर + २४ अर ६यर। पर
३२ २४ यर + ८६ अयर + १२६ अयर -२४ अर
३६ २४ य ८६ अय२ १२९ अयर २४ अर
३६ + ३६ + ३६३६ २य ४३ अयर ४३ अरेय अरे । ३२+ १८ + १२२०३२ '
नो ऊपर गुणनफल हुआ था वैसा हि हुआ।
कर
कर
उदा० (५) क+
और क-
इन का गुणनफल क्या है?
..
+
क
-
कर यहां
अ-क
कर और
+कर
अक .. गुणनफल :
अ-क
क
-
-
अक-क+कर अक
-क अ-क अक+कर -कर प्रक +क
+क अक अकर +क -कर
---
X
--
-
-
अभ्यास के लिये और उदाहरण ।
८ श यरर
e
३अ ग. ६ग१२ अय १४ अक
------ ---- और --- -x५कघ ३५कघge कर १५ यर । म अक अर+अक
- क क प्रक-कर
-
X
-
--
C
४ य+8 यर यल-३रल ६यल (३) ५ यर-५२४२यव + २ रख-रख ।
For Private and Personal Use Only
Page #159
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
20
२य+३र
+२
भित्रपदों का गुणन । २य-३र ४ य३य-र (य-४
X
---
-
-
१य
३य-६र हय
-
X
य-५ य+२ यर-३ य-१० ३ य+8 2 -१ य+५य-४' ३ य+र ४य- १२ यर-७ यर - १० र ५य-र ७य+हर ५५३+३८ यर-हर .
य+ अ ७य-२क १४ य+ (७-४क) य-अक ५ य- य-४ अ ४५ य२- (२० अ+क) य+४ अक ७यर-१०५+३ य+६ +८ ७३+२५ य-१२ २य-- --- १०३ य२-४ य+१ य--१७ य+५ य३+३ . य+यर + य + र य. -- ३ य - यर + य - र'.
३यर ३य (अ-क) अ + क अ (अर-अक+कर) '
x
र-कर
1. क , अकर
^ २- २ =क + ----
प्र
-का
अ(अ+
क)
६अक
अर-अक-कर (५३) २ अर -- ३ अक + क ३ अक– १५ कर
अर-६ अक+५कर अ * २१ अ+ सक-२कर-७ -२क' (अ+क)२ अरे-कर अ+३ अक+३ अकरकर (अ-क) अ+ कर अ - अक + अकर-क३ ।
For Private and Personal Use Only
Page #160
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(१५)
(१६)
(१७)
(१८)
(१९)
(२०)
(२२)
ऋ
(२३)
अ
य
यर + ५यर + ६२
य-२६
श्य +५र
A
+
अ य
य
करे
X
अ+२
य+र
य - र
५+४
६
६ ४ क
多
अ
क + ग
-- क
X
+9 ×
भिपत्रों का गुणन ।
ই
+
+ य+र
२ क
ग्र
1
घ - १ )
ऋ ।
+ य
२
1
www.kobatirth.org
क
-
x
A
+४+३
(+9)
र
( + क) (अ + ग)
(क - ग) २
करे (
क)
५ क
य + यर - ६१
य - ४ यर + ३२
४
क
X
+ क
- ग )
+ कर
ऋ + करे ।
X
६
1
अ
X
क
X
+
x
अ
( य +₹
य - ₹
म
अ
-
en {~+=+=+}{@==1)}
(:१)
+9
x
==
१९२
५ क
END
菜籽
क
ग
x
ل
=२
अ - १२
+- १२
Acharya Shri Kailassagarsuri Gyanmandir
य-र
य+र
-~
क +
For Private and Personal Use Only
+
य - घर - ६१
२८ + र + ५र२
य
T
४ अ
करे
अ +
२.
क + ग
अ - ग
+ १।
- थ
२ क
菜十一
1
कर क
car (a2+(2)
(य – ₹२ ) २
-
१४३
-
1
Page #161
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
य
xरय+र
--
।
१४४
भिवपदों का भागहार। (४य+t)) ( ३ ) 1 यर-४१२) । = य+ यर + +
( +क)२ अई-कर अ-क (२५) अर-कर (अ+क)३ * (अ+क) _ (अर - का) (२+ क')
(अ+क)
५ भिन्नपदों का भागहार । हो । रीति भाजक के अंश और छेद को पलट देओ अर्थात अंश के स्थान में छेद को और छेद के स्थान में अंश को लिख देना फिर ऐमे भाजक से भाज्य को गुण देओ जो गुणनफल होगा सो अभीष्ट भजनफल है।
इस की उपपत्ति । मानो कि दस में का भाग देना है तो भित्रपद की रीति से
के यह लब्धि होगी। . अब इस के अंश और छेद को कघ से गुण देने से, xघ अध
= xयों उपपत्र हुआ। - १५ अय उदा० (१)
यर इस का भाग देओ। कार इस
मे कर इस १५ अश्य यर १५ अय १६ अकर
= कर *१६ अकरकर यर ' १५ x १६ अकर
---- इस में अंश और छेद को अपर्तित करने से कर रघर
क
gxकघ
कगघ
For Private and Personal Use Only
Page #162
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
५१२ अक
t2 xar
उदा० (२)
(
२ + य
ग्र+य
+ य
+य) २
x
ऋ
१५ २
૧૬
१.१
भिवादों का भागहौर |
१० क
३ र
१५
१६
÷
+
३ प्र २ १५
ईक ૧૬
य.
www.kobatirth.org
य
+ य
४१
७२ क
+
४१
७२ क
१० .
१८ क
+
अ
क
अ + य
(अ + य)
उदा० (३)
भाग देना ।
यहां (३१) वे प्रक्रम के तीसरे प्रकार में जो भागहार का विधि लिखा है उस से भजनफल के लिये न्यास |
1
३ क
इस में
२
"क"
१३५ क + क ९६ २० नाक
१४४ क
०२
Acharya Shri Kailassagarsuri Gyanmandir
X
३
-
For Private and Personal Use Only
यह भाव्य और
+
श्र+य
१६.
SA
कर
अथवा पहिले भ्राज्य और भाजक को सवर्णित करने से,
१३५ क + ८२ क- ९६
२७ क
१४४ कर
भाजक है । अब भाग देने से,
- य.
क.
1.
क
-
१२ क
१४५
दूस का
૧૬
यह
Page #163
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१४४
भिचपदों का भागहार । १३५ अकर+२ अक-९६ ७२क
५४४ कर २७ अक-१६ ७२ क (१३५ अरक+२ अक-६६) १ १४४ करे। २७ अक-१६
.
(५ अक+६)
=-+-जो ऊपर भजनफल आया था सा हि है।
२
क
अ+कर
उदा० (४) १२-कर
-क
- इस में अ+क
-
- इस का भाग
देखो।
. अर+कर
अ-क
यहां
२
+
क
अर+कर- (अर-२ अक+कर)
अर-कर अर+कर-२+२ प्रक-कर
पर-कर
भार
--
अर-कर . अर अ+अक-अर प्रक - क
क +क २अक अकमक +क २ :.भजनफल =--
अर-कर +क पर-कर अक प्र-क
+ कर अ-क
पार-कर अ+क अथवा, भजनफल = -
र यहां अंश और छेद को
अ+क
अ+क- (अ-क)२ अर-क से गुण देने से--
अ (अर-क)- अ (अ-क) अ+ कर - अ+२ अक-कर अक - २
अर-अमर - A+ अक अक-अकर अ-क
For Private and Personal Use Only
Page #164
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवपदों का भागहार।
१४.
उदा० (५)
- इस को सर्णित करो।
.
क
यहां अंश और छेद को क से गुण देने से
१
अक+१
+
क
उदा० (६)
- इस को सर्णित करो।
+
यहां सवर्णन करने के लिये (५) वे उदाहरण में क के स्थानपर
को रखने से
40
क
+
कग+9
अकग+
+ग
+
-
--
५
- इस उदाहरण में जो भिवपद निर्दिष्ट है ऐसे भित्रपद का नाम विततभित्रराशि रक्खा है।
- उदा० (७) १ में य+१ का (३१) वे प्रक्रम के तीसरे प्रकार से भाग दे के विस्तार से लब्धि कहो।
For Private and Personal Use Only
Page #165
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवपदों का भागहार ।
न्यास।
-
-
इत्यादि।
१
+
रत्यादि।
रस प्रकार से यहां
य+
य य
य
इत्यादि, यह विस्तार से लब्धि है।
अब इस में य+१ रस भाजक के दोनों पदों को पलट के जो १+य इस का १ में भाग देओ तो ..
-१-य+4-+ इत्यादि यह लब्धि पाती है रम से १+य यह सिद्ध होता है कि
For Private and Personal Use Only
Page #166
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रपदों का भागहार।
१-य+
-
+ इत्यादि =---+
-
+ इत्यादि।
ये दोनों समान पक्ष परस्पर अत्यन्त अलग २ रूप के हैं यह बड़ा हि चमत्कार है।
अभ्यास के लिये और उदाहरण ।
.
-य+रा
य+र
अ-क
अ-का
प्रक-कर
प्रग-कग ३क
U
(a) {1-4} + {",}--
५
१
+
य
१
+य
+२क
३
-५क
२
-
क
-
क
-१३अक+५कर
(२) अ.} * (अ-2}=
1
-
4
२य+-
-
१
.
+
-+क
५
=
-+
+का
का 'क
() {2
} {44-4}-.
+
र
-
27
For Private and Personal Use Only
Page #167
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१५०
'
य+३यर+२ य-३यर + स्य-२५ ४य-१ '
भिचपदों का भागहार । य२+५यर+६ य+२यर-३१२ ० (११) -
६ -५ घर + ३ +२यर- य+ य-१० य-य-२ य-२य-१ १२ यर-१७ य-५ २अ + ७ अक+२ अकर-३३ ३० अ +३१ अक-२५ अकर-६३
+१४ अक-२७ अक+कर १० अ-२३ अक-६ अकर-१२ कर
अर-३ अक-४ कर १२ - १७ अक+६कर
(
क (२ अ-क))
(अ-क)२ ।
अ-क अ+क
-
"
+ क गर
क ग
+ ग +क
+
क
+ 15
३
अ
अ
कर
१५ अर) 1१५य १४य
(७ अरे ५य
३) २२ ५ २
-
३य
यर ।
१३७
२-
SIS
२
rI
+
201m
३१०
For Private and Personal Use Only
Page #168
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रपदों का भागहार ।
-
IY
अ+कर अर-कर)
(अ+क
अ-क)
प्रक
क
+ क
रे
+कर
+ग
क+ग
क + ग (य+
+ग य-१)
(य+र
य-र)
यर
(य-
+-11-यर)-ययनरत
यर-अय+क
य+ अय+क
प्रय
--
य
+
क
य+ अय+क'यर-अय+क
य-५
य-३'य-१
है
य-. ३य (य-५).
है
-
+
- +य+४ य+१ य+२ य+२य-३
१ २ ३ य+५य+४ २ (य-१) य+२' (य+३) प्र+५ प्र+२ अ+२ +
५ ३ (२ +9) अ+५ +२ २ +१४ +२९
+२ +५
For Private and Personal Use Only
Page #169
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१५५
(२०)
(३८)
(SC)
श्रथ
कछ
(३१)
य +
'अरे - य
अरे + य
अथ + कर
गय- घर
ाथ + कर
गय - घर
(३०) (अ + क
य
(३२) त +
(३३) अ +
थ +
क
ग+
+
गध प्रज
घछ
कभा
च
भिपडों का भागहार ।
गज
Wh
य
द+
www.kobatirth.org
अ- य
淨路
ज
गय + घर
चाय - कर
गय + घर
चाय - कर
घ
₹ ।
१
श
ग े +२क) -
थर
थ -
घभ
'अरे - य
+
(अ + ग९) य
(अ' - ग२) य
य - ३य - २
Acharya Shri Kailassagarsuri Gyanmandir
來
+
For Private and Personal Use Only
ग
य+र।
च - थ ।
श्रय
अ े+य
अ + क - ग
क+ग
क + ग + २ श्रय ।
(क' + घ१) र
(कर -घ) र
तथदध + तथ + तथ दध +9 थदध + थ +ध
प्रगचज+गक+धन+कचन+कछ
गचज + क् + घन
'
Page #170
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(३४) यह सिद्ध करो कि
अ - य
अ + य
प्र
(३५) यह सिद्ध करो कि
उदा०
TO (9)
घात क्या है
और
I.
-
franदों की बात क्रिया ।
थ
य े -२८ + १ य
न्यास ।
१
प्रय
द
२य २८१ २८३
+
२
www.kobatirth.org
२ च
क
६ भिन्नपदों की घातक्रिया |
६७ । रीति । उद्दिष्ट पद के अंश का वर्गादि घात करे। वही अभीष्ट घात का अंश है और छेद का वर्गादि घात करो वही अभीष्ट घात का छेद है ।
इस की उपपत्ति भित्रगुणन की क्रिया से प्रति स्पष्ट है ।
२ अ
क
+
इस का और
इस का वर्ग
इस का वर्ग
अथ
T
य
=
चतुर्घीत
घन =
+ इत्यादि ।
+ य
२
क
४
इस का वर्ग,
२ अ
क
२
२ च
क
Acharya Shri Kailassagarsuri Gyanmandir
४
+ इत्यादि ।
For Private and Personal Use Only
धन और
(२)
(२) ३
करे
(२) ४
क
२) २ अध्य (T)
८
لج
२
करे
१६
१५३
चतु
Page #171
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१५४
भिचपदों की घातक्रिया।
( अय) ३ (-अय)३ -अयर ३ घन = 1-
= , वाई ।
अय) ४ (-अय) अय'
चतुर्धान = १-
(२)
उदा० (२)
य+य-१
- इस का.वर्ग और घन कहो ।
य
-
य+य-१ . (य+य-१२ य+श्य-य-२य+१
- इसका वर्ग- . य+रय-२
(य+रय-२)२ य+8 य-८य+8 '. (य' + य – १)३ य+३य - ५ य+३य-१ घन =
(य+२य-२)३ य६+६ +६य – १६यः-१२ य+२४य
उदा
उदा. (३) अय+ य - इस का वर्ग और घन क्या होगा?
न्यास। य+य
न्यास।
१२+
गर
+
य
-
-
"
म
-
--
IY
अर्थ =
र अारक
For Private and Personal Use Only
Page #172
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रपदों की घातक्रिया।
१५५
२
वर्ग
= --य+
क -य-य--य+
.
.
-
-
(अय+अकय-कर अथवा
अक अश्य +२ अकय - अकरयर-२ अकय+क'
अकर
(प्रय+अकय-कर) ३
और र-य + य -
र-गर
प्रक
___ अय+३ अकय-५ अकाय + ३ अकश्य-क
अकरे अ . ३ अरे
.... ३कर करे = य+ य - ५ य+ य-जोऊपर वर्ग और घन सिद्ध हुए थे वैसे ही ये भी हुए।
अभ्यास के लिये और उदाहरण । श्या २४ यर । श्य) ३ सय
For Private and Personal Use Only
Page #173
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिषपदों की घातक्रिया। ३अकर) २ ( क
कर) ३ २७ अकर
१२५ यार २ ३२-२य+१
य+रय+
रा
-
र-२क+
AN
३
२४चा
-
+-
--
-
३का
20
१४४
+
२
२०
+२)
(अ+
२
HU
२ कर
15
ग
कच
*
+२ग कगरे
-
य
क -
- य+
अ . क
. सय ३१) २
गर.
२ ।
रा
अ
सरर
यर
४य
४
For Private and Personal Use Only
Page #174
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवपदों की मूलक्रिया।
PH0
२)
२
+ अय+
+-- 'य-
य२-२ अय+
-य+२ प्रय+
अ
+४ अय+५
+
+
+
इत्यादि।
रसार
-
-
-
-
-
-
-
-
कग
१०४
गरे
गरे
।
०
(१३)
२-य + -य-- ----य (३ २४सय
-य
--य
-य---। ३२
६४
क)
३
३
य
३कय
-
क
+
क
+
अ
'अरे।
-
-
०भिन्नपदों की मूलक्रिया ।
हट। रीति । उद्दिष्ट पद के अंश का वर्गादिमूल लेना वह मल अभीष्टमूल का अंश है और छेद का धादिमल ले वह अभीष्टमल का वेद है।
यह रीति घातक्रिया की रीति से उलटी है इस से दस की उपपत्ति अति स्पष्ट है।
२५ प र इस का धर्गमूल क्या है?
उदा०(१)
-
For Private and Personal Use Only
Page #175
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
A
न्यास |
उदा० (२)
यहां (३५)
२५ ४२
४९ क
जैसा
अ
अक
२+
उदा० (३)
वे प्रक्रम
कर
+ अ
२ प्र क
क
ऋ
fransों की मूलक्रिया ।
क
इस का वर्गमूल
क
यहां वर्गमूलक - यह भी उस का वर्गमूल हैं ।
२०
घनमूल क्या है ?
www.kobatirth.org
से मूल
-
क
यय
- २ इस का वर्गमूल क्या है ?
-R+
अथवा उद्दिष्ट पद को सर्वार्णित कर के वर्गमूल लेने से भी यही
बनते हैं।
2+
इस का वर्गमूल
A क
क अ
लेने के लिये न्यास |
२५ अय' इस का वर्गमूल ४९ कर± इस का वर्गमूल
५ य
७ कर
५
७ कर
i at,
१५८४
+ २८ ८ १२
२
Acharya Shri Kailassagarsuri Gyanmandir
यह आया इस के धनत्व को पलट देने से
वा,
A
क
अ क
क
श्र
४०५८ २
६४ ₹४
४
२ क + क
प्रकर
क क और
ग्र
अ
For Private and Personal Use Only
1
१२९ य
१२८५
इसका वर्गमूल
प्र
1 क
SSC
५१२१६
इस का
Page #176
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रपदों की मूक्रिया यहां (३६) वे प्रक्रम से मूल लेने के लिये न्यास । ९ य १५य ४०५ यर ७२९ य ७२९ यर ३य २० र ६४१२८२५५१२६(३ र
। २
-
-
३/
य
२
य
य
२७५३ (२ ३य)३
३
य, ३य 1/य य १५ यर ४०५ यर ७२९ य २९ (यर ३य ८ ० र २६४ र १२८ ५११६३२ उदा० (४) अ + य इस का विस्तार से वर्गमल कहो ।
यर २५ य न्यास। अ + य (अ+ - + , इत्यादि ।
-
-
- NAAMH
-
-
२
+
+यर
का
यर
य-
2)
--
+
--
-
य
या
+
य
यह
यो य . य
प्र ४ अई '१६ अ इस प्रकार से
इत्यादि ।
For Private and Personal Use Only
Page #177
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(१)
+ य* इस का वर्गमूल अ +
(२)
(8)
(५)
(६)
(0)
१६ क
२५ गं
२० अध्यक्ष
६४ कर
अरे (क- ग) ३
८ ( अ - य ) ६
य ( - य) ४ (अ+य) ४
=
(८) ८१
www.kobatirth.org
freeदों की मूलक्रिया ।
य य
इस का वर्गमूलं = =
५४
इस का घनमूल
४ य - १२य + c
य+८+१६
७
अभ्यास के लिये और उदाहरण ।
३२ १५८१०
२४३ (अ + य) 2 (य - २ ) १०
२२
३ (अ + य) (य – २)२
४ य
८ य
२०₹
+ २५ र १५ र २० य
२ ग्र ८
+
२य २ ५र
५र ३ ल्य
इस का घनमूल
=
1
+
३
४ क
इस का चतुर्घतमूल °
इस का वर्गमूल
४ अक
५ ग
२५ (१
९२७२६
२४५
८१ य
य
३५
+
Acharya Shri Kailassagarsuri Gyanmandir
अ (क
૧૬
४
य
1
इस का पज्वघातमूल
२५
For Private and Personal Use Only
इत्यादि है
ग)
· घ) २
1
य (अ थ)
(+घ)
२८-३
य +8
इस का वर्गमूल
1
इस का वर्गमूल
1
Page #178
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(<)
(१०)
(११)
(१२)
EC
(१४)
वर्गमूल
* +
=
क
अ + क
अक
२ + ३
३य + १
(१३) य +
य - १
२५
२ (य- ३)
य
१६६
य
४ ३
५८ + व्
+ १३
६ य२ - १० य - ४
+
૧૬
य
-
य
य
(य + १) ४
(य + २) ४
+३।
(य +१)
(य + २) १
भित्रपदों की मूलक्रिया ।
६ (अ + कर)
अक
२
य
२ र
य
fre
Gugg
www.kobatirth.org
+8
(थ + ५
२५- ४
3 {:
ད་བ་
ल
२ (य- १) य
५य३
₹३
य +
(य + १) 2
(य, + २)२
(य + 2)
(य. + १)
+ ११ इस का वर्गमूल
य
t
८
૧૬
-
३
दय
+२।
Acharya Shri Kailassagarsuri Gyanmandir
इस का वर्गमूल
इस का वर्गमूल
+ २८ इस का वर्गमूल
(य +2)२
(य + १) 2
+ 8 इस का वर्गमूल
For Private and Personal Use Only
+8
(य +२) ४
(य + १) 8
१६१
य+१
य+२
1
इस का
Page #179
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिन्नसम्बन्धि प्रकीर्णक । या १५ र ३१९ १६RC (१५) + + + १३ +4 इस का वर्गमूल
र र य२ + + त्या २५ र २७३ - इस का घनमूल =---
र श्य
कर 'श्य सय
३२+२
२+
१
य+२०---
४
१२+ ---
य
-४
य
-१
र
इस का घनमल
य
+
9
१+ -
य-
+३य+
(१९) अ + अक इस का वर्गमूल = अ +:-
+ कर
- इत्यादि।
(२०) य+ १ इस का घनमूल = य+ १-+ इत्यादि ।
I
+५१
क
५
(
८ भिन्नसम्बन्धि प्रकीर्णक ।
छेदगम । हह । परस्पर समान धा विषम दो पक्षों में यदि एक वा अनेक भिजपद हो तो जिस क्रिया से उन दो पक्षों का साम्य वा वैषम्य न
For Private and Personal Use Only
Page #180
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
freeम्बन्धि प्रकीर्णक
保成建
बिगाड़ के उन के छेद वा छेदों को उड़ा देते हैं उस क्रिया को छेदगम कहते हैं उस का प्रकार यह है ।
उद्दिष्ट दो पक्षों में जो भित्रपद होगा उस के छेद से वा अनेक भित्रपद हों तो उन के छेत्रों के गुणनफल या लघुतमापवर्त्य से उन दोनों पक्षों को गुण देओ । इस से सब छेद उड़ जाते हैं ।
इस छेदगम से पक्षों का साम्य वा वैषम्य नहीं पलटता । इस की उपपत्ति दूसरी और पांचवी प्रत्यक्ष बात से स्पष्ट है ।
उदा० (१) य + यू. + यू – – ३ य
--
उदा० (२)
Acharya Shri Kailassagarsuri Gyanmandir
= ३ + १० यहां छेदगम करो ।
इस में छेदों का लघुतमापवर्त्य १२ है इस से दोनों उद्दिष्ट पत्तों को गुण देने से, १२८ + १३८–१२८ ३६ य
+ 92°,
इस में प्रत्येक भित्रपद को लघुतम रूप देने से,
१२८ + ६य - ४यय + १२०, सब छेद उड गये ।
व य+
+ य + ३, य + ३ = ५ - ४ - इस में छेदों को उड़ा देओ ।
४
यहां पक्षों को
२४ से गुण देने से,
४य + ६ + १८ = १२० – १२८ + २१ ।
यहां जो भित्रपद ऋण चिह्न से जुड़ा हुआ है उस के अंश के सब पदों का चिह्न पलट दिया है क्यों कि उस अंश को घटा देना है ।
अथवा यदि उद्दिष्ट पत्तों को इस रूप में लिखो
य+ठे (य + ३ = ५ - ६ (४ य - 9)
क्षेत्रओ
और फिर इन को २४ से गुण
४य + ६ (य + ३) = १२० - ३ (४ य - ७) अर्थात, ४य + (६ य +१८) - १२० - (१२८ - २१)
For Private and Personal Use Only
Page #181
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१६४
freसम्बन्धि प्रकीर्णक ।
और (२४) वे प्रक्रम से कोष्ठों को उड़ा देओ
४य + ६ + १८ = १२० - १२ + ३१
तो भी पहिले जैसे छेदगम से पत
www.kobatirth.org
७० । इस प्रक्रम में विषम पत्तों के छेदगम के कुछ उदाहरण लिखते हैं । इन में यर इत्यादि अक्षर धन संख्याओं के द्योतक जानो ।
(२) यह सिद्ध करो कि
य
उदा० (१) यह सिद्ध करो कि + यह सर्बदा २ से बड़ा होता है।
यहां
> बा
२
+ छेदगम से, 2 + '> वा < २यर
परंतु (३०) वे प्रक्रम में सिद्ध किया है कि
य° + ₹ > २ यर
हुए
यहां
छेदगम से,
यू + > २ यह सिद्ध हुआ ।
स्पष्ट
इस से है कि कोइ भित्रपद और उस का व्यस्तपद अर्थात् उस का १ में भाग देने से जो लब्ध होगा इन दोनों का योग कभी .२ से छोटा नहीं हो सकता ।
र
पक्षान्तरनयन से
परन्तु
थे वैसे हि हुए |
Acharya Shri Kailassagarsuri Gyanmandir
+
+ >वा < य+र
a2+c2 >al< at (a+1)
बा, ( य े-यर + 2) (य + र) > बा < यर (य + र)
य - घर + १' > बा < पर
य+१> वा <२ यर
य' + ₹ > २ यर
- यह य +र इस से अधिक होता है ।
For Private and Personal Use Only
Page #182
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
न्यास ।
छेदगम से,
पक्षान्तरनयन से,
भिवसम्बन्धि कोक |
+
> य + र यह सिद्ध हुआ ।
(३) यह सिद्ध करो कि यर यह यर इस से न्यून होता है ।
www.kobatirth.org
उदा० (8) ₹, व, यू. ल.
यर य+र> वाय+
४ यर > वा < यर +२ यर + ₹*
२यर > वा < य +
और
य+ल+श + र+व+ष+है
Acharya Shri Kailassagarsuri Gyanmandir
परन्तु २यह <थ' +,
:
इस से यह स्पष्ट है कि किसी राशि के विषम दो भागों के गुणनफल में उसी राशि का भाग देने से जो लब्ध होगा वह उस राशि के चतुर्थाश से सर्वदा न्यून होता है ।
तब यूत, बल > त,
और यूथ,
लय,
यर य+र
यह सिद्ध हुआ < ।
ये चार
यह पद
सिद्ध करो कि बड़ा हो उस से छोटा होगा और जो सब से छोटा हो उस से बड़ा होगा ।.
श
६५
यहां कल्पना करो कि उम: चार पत्रों में सब से छोटा पद य हैं है और माना कि इन दोनों पदों के शतक :
और सब से बड़ा पद हैं क्रम से त और थ हैं ।
(धन) भित्रपद हैं तो
यह
उन चार पदों में जो सब से
>त और
सूत्र त
शरथ और स= थ
For Private and Personal Use Only
.. य - तर, ल > तव, श> तप और स> तह
और य< घर, लर था, श यत्र और. स. - यह...
जब कि सब बड़े पदों का योग छोटे पदों के योग से बड़ा होता है.
Page #183
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवसम्बन्धि प्रकीर्णक । :. य+ल+श+स>त (र+a+ + ह)
पार य+ल+श+स<थ (r+a+ष+ह) . य+ल+श+स >त और < थ । यह सिद्ध हुआ ।
इस उदाहरण में जो चार भित्रपदों का गुण दिखलाया है वही दो आदि अनेक पदों में भी रहता है और यह इसी ऊपर दिखलाई हुई युक्ति से सिद्ध होता है।
अभ्यास के लिये और उदाहरण ।
(१) यह सिद्ध करो कि यर यह सर्वदा यह इस से छोटा होता है जो य से र छोटा हो। - (२) यह सिद्ध करो कि य + यह + १ दस से बड़ा होता है जो य = र न हो। ___ (३) यह सिद्ध करो कि य+ यह+1 इस से बड़ा होता है जो य=र न हो । अर्थात् कोइ भित्रपद और उस का व्यस्तपद इन के योग से उन के वर्गों का योग सदा बड़ा होता है।
(४) यह सिद्ध करो कि या + य यह + इस से बड़ा होता है जो य =र न हो।
७१। इस प्रक्रम में भिवपद संबन्धि कितने एक उपयोगि सिद्धान्त लिखते हैं।
पहिला सिद्धान्त । जो यहो तोयल होगा। इस की उपपत्ति।
+
T
AN
For Private and Personal Use Only
Page #184
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
freसम्बन्धि प्रकीर्णक ।
जब कि = तब (१८) वे प्रक्रम की दूसरी प्रत्यक्ष बात से
य+१+१, अर्थात् य+ल
=
य - र
और यू - १ = बल – १, अर्थात्
-
इस लिये उसी प्रत्यक्ष बात से
य+T
य - र
ल + व
र
व
अर्थात् य
..
=
+1 X
य + र
प्रथ कर
..
अर्थात्
दूसरा सिद्धान्त । जो य
और अय
गय
इस की उपपत्ति |
ब
-
अर्थात्
447
अनुमान । जो य+र्ल - वहा तो य=
र
ल+ब य र व
-
-
-
होगा ।
इस की युक्ति ऊपर के प्रकार के विलोम विधि से
लब यह सिद्ध हुआ । | ।
-
कर अल कव
घर गल
घव
www.kobatirth.org
अय + कर गय + घर =
कर
घर
अय + कर कर
घ (आय + कर ) क (गय + घर)
X
अय + कर गय + घर
तब
=
:
+9=
14
इसी प्रकार सिद्ध होता है कि गय + घर,
घर
अब (१८) वे प्रम की दूसरी प्रत्यक्ष बात से,
चल + का
कव
X
I
त्राल
कव + १ अर्थात् अय + कर
कर
+
- घ
व
हो तो
ल
घर गय+घर
अय
चल = कर कव
अल + कटा गल + व
घ (अल + कव) क ( गल + घव)
Acharya Shri Kailassagarsuri Gyanmandir
प्रय + कर चल + का गय + घर गल + घव
=
अल + का कव
1
1
For Private and Personal Use Only
=
X
स्पष्ट है ।
अल + कटा कव
गल + घव घव
गल + घव घव
यह सितु हुआ 1
f
1
घव गल + घव
1
1
१६०
Page #185
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवसम्बन्धि कार्यक। - इसी प्रकार से जहां अपर दोनों पक्षों में १ बाड़ दिया है वहां १ घटा देने से यह सिद्ध होता है कि अय-कर = गल-कव।
अनुमान । इसी ऊपर की युक्ति से यह भी तुरंत सिद्ध होता है कि जोयल हो तो,
प्रय+कर अल+कव। गय-बरगल-घवा
गय+घर गल+घव । तीसरा सिद्धान्त । भित्रपद के अंश और छेद इन दोनों को किसी एक हि पद से गुण देओ वा भाग देओ तो भी उस भित्रपद का मान बिगड़ता नहीं। यों पहिले (५८) चे प्रक्रम में दिखलाया है परंतु कोर एक हि पद नोड़ देओ वा घटा दे तो ऐसी स्थिति नहीं रहती सो इस प्रकार से
(१) किसी (धन) भित्रपद के अंश और छेद इन दोनों में जो कोई एक हि (धन) पद जोड़ देओ तो अंश से छेद जैसा बड़ा वा छोटा होगा उस के अनुसार उस भिवपद का मान बड़ा वा छोटा होगा। इस की उपपत्ति। मानो कि यू मह भित्रपव है पर और कोर पद है। अब जानना चाहिये कि यह य दस से बड़ा वा छोटा है अर्थात अ > वा वा < यर + अय :
अर > वा < अय अर्थात् > वा < य इस से स्पष्ट प्रकाशित होता है कि र जैसा य से बड़ा या छोटा होगा उस के अनुसार यह इस से बड़ा वा छोटा होगा यों सिद्ध
For Private and Personal Use Only
Page #186
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रसम्बन्धि प्रकीर्यक। . (२) किसी (धन) भित्रपद के अंश और छेद इन दोनों में जो कोई एक हि (धन) पद घटा दे तो अंश जैसा छेद से बड़ा वा छोटा होगा उस के अनुसार उस भित्रपद का मान बड़ा वा छोदा होगा।
इस की उपपत्ति ।
मानो कि एक भिवपद है और अ यह कोई पद य और र इन दोनों से छोटा है।
तब य-अ > वा < छेदगम से, या- अर > वा < यर-अय पत्तान्तरनयन से, अय > वा < अर
अर्थात् . य > वा < र इस से स्पष्ट है कि य जैसा र से बड़ा वा छोटा हो उस के अनुसारय-यह इस से बड़ा वा छोटा होगा । यो उपपत्र हुआ।
चौथा सिद्धान्त । किसी भित्र राशि के धादिक घात भित्र हि होते हैं।
इस की उपपत्ति । मानो कि उद्दिष्ट भित्र राशि का लघुतम रूप है अर्थात् इस में अ और क ये परस्पर दृढ हैं तो (४५) वे प्रक्रम के चौधे अनुमान से अर अरे, इत्यादि प्रत्येक का, करे, क इत्यादिकों से दृढ होंमे । इस लिये अ अ अ . कर 'क' इत्या
इत्यादिक सब भित्र हि होंगे। यों उपपत्र हुआ।
७२। इस प्रक्रम में घातमापकों से गणितप्रकार दिखलाये हैं। - (१) अ इस में अका भाग दिये मान लो यह नीचे लिखी हुई पदों की पंक्ति उत्पन्न होती है ।
For Private and Personal Use Only
Page #187
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१७.
भिषसम्बन्धि प्रकीर्णक । प, अरे, अर, भ, १, १, ५, १, १ ... ...
" अरे अरे अरे . यहां पहिले तीन पदों के घातमापक उत्तरोत्तर एक एक कर के न्यन होते गये हैं इसी क्रम से चतुर्थ आदि पदों को लिखने से उन का दूसरा रूप बनेगा।
सो ऐसा अ, अ, अ, अ, अअअअ ... ... अर्थात् अ, १, १, ..... इत्यादिक पदों के क्रम से अ', अ', अ अ अ अ इत्यादिक रूपान्तर हैं ।
:: अनो, १ = अं,' - अअ. अमें, इत्यादि।
इस से यह जान पड़ता है कि जहां अ° ऐसा चिह्न आवेगा तहां उस का मान १ है अर्थात् हर एक राशि का शन्य घात १ होता है ।
और इस से यह भी स्पष्ट सिद्ध होता है कि किसी पद के घातमापक का ऋण चिह्न पलट के उस को अंशस्थान से निकाल के छेदस्थान में वा छेदस्थान से निकाल के अंशस्थान में लिखने सकते हैं।
__* अ = अ और श्र' = १ ये दो रूप प्रकारान्तर से भी सिद्ध हो सकते हैं सो ऐसे
जब कि १ को किसी पद से दो बार गुण देओ तो गुणनफल उस पद का द्विघात अर्थात् वर्ग होता है, तीन बार गुण देो तो त्रिघात अर्थात् धन होता है, चार बार गुण देनी तो चतुर्यात होता है इत्यादि, तब इस से स्पष्ट है कि १ को अ से एक बार गुण देो तो गुणनफल श्र का एक घात होगा।
परंतु १४ = श्र.:. अ = अ यों सिद्ध हुप्रा ।
इसी भांति १ को असे शून्य बार गुण देशी अर्थात् किसी बार न गुणो तो स्पष्ट है कि १ ज्यों का त्यों बना रहेगा
इस लिये अ = १ इस से यह भी सुरंत सिद्ध होता है कि ० = १ अर्थात् शून्य का भी शून्यघात ? होता है।
For Private and Personal Use Only
Page #188
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रसम्बन्धि प्रकीर्यक।
१७१.
(अ - क) - (अ)
(७) (
+य)न = --
( +य)-न'
(२) जब कि अं= xxx इत्या० न गुण्य गुणकरूप पद
और = xxx .इत्या० म गुण्यगुणकरूप पद,
जब न और म संख्या धनात्मक और अभिन्न हैं, तो x x x इत्या० न गुण्यगुणरूप पद x xx इत्या० म गुण्यगुणकरूप पद
=xxx इत्या० (न+म) गुण्यगुणाकरूप पद
= ( वें प्रक्रम से) अम इस से स्पष्ट प्रकाशित होता है कि किसी एक हि पद के दो घातों का गुणनफल उसी पद का वह घात होता है जिस का घात. मापक उन गुण्यगुणकरूप घातों के घालमापकों के योग के समान है।
For Private and Personal Use Only
Page #189
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१७२
न
(३) जब कि ओ =
और
न
तो, अ =
at,
-
(*)
म
= प्र
=
जब न और म ये दोनों धन और अभिन्न संख्या हैं,
अ =
न-म.
म अ
म
च
न
म
老
freerafia watर्णक ।
अ x x x इत्या० न गुण्यगुणकरूप पद
www.kobatirth.org
-म
x x x इत्या० म गुण्यगुणकरूष पद
अXX इत्या० (मन) गुण्यगुया करूप पद
यदि म से न छोटा हो
अ × × × इत्या न गुण्यगुणकरूप पद
अ × × अ ' x इत्या० म गुण्यगुणकरूप पद
= अ X अ x इत्या० (न - म) गुण्यगुणकरूप पद
यदि न से म छोटा होवे,
न
न-म
(१) x =अ t
Acharya Shri Kailassagarsuri Gyanmandir
इस से स्पष्ट है कि यदि भाज्य और भानक क्रम से किसी एक हि पद के घात हों तो भजनफल भी उसी पद का घात होता है जिस का घातमापक भाजक के घातमापक को भाज्य के घातमापक में घटा देने से जो शेष बचे उस के समान होता है ।
(४) यदि किसी एक पद के दो घातों के घातमापकों में एक वा -दोनों हों तो भी उन का गुणन में और भागहार में सवर्णन क्रम से इस प्रक्रम के (२) हे और (३) रे प्रकार से बनता I
जैसा
X ऋ = त्र
न-म
= नः
-म - (न+म)
For Private and Personal Use Only
Page #190
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिषसम्बन्धि प्रकीर्णका।
- म
न
+म
(४) अ -न-म)। क्यों कि, *-भ,
7
X
-न+म)
X
न+म
-
-न-म)
और, अ
10
(५) जब कि वे इस काम घात = (अम
= अxxx इत्या० म गुण्यगुणकरूप पद = ब्र+न+न+ इत्या० मपट इस प्रक्रम के (२) रे प्रकार से
तो इस से सिद्ध होता है कि उद्दिष्टपद का अभीष्ट घात वही पद है जिस का घातमापक उद्दिष्टपद का घातमापक और अभीष्टघातमापक दन के मुणनफल के समान है और जिस में मलपद वही है जो उदिष्टपद में है।
इस का
(E) जब कि अ दस का म घात यह है तो अम मघातमूल अ यहो होगा।
अर्थात ऐसा फलित हुआ कि मनमनमम ।
For Private and Personal Use Only
Page #191
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
૧૦૪
freeम्बन्धि प्रकीर्णक ।
इस से सिद्ध होता है कि उद्दिष्टपद का अभीष्टमल वही पद है जिस का घातमापक उद्दिष्टपद के घातमापक में अभीष्टमूलमापक का भाग देने से लब्ध होता है और जिस में मूलपत्र वही है जो उद्दिष्टपद में है ।
जैसा
(4) √
१०
१० २ ५ न===
३
(२) ।
ह अ = =
(३) =अ=
अ
जैसा
(४) √ अॅ===
अ =
ठ
त्र= द्म,
, ा,
इसी क्रम से √अ= / अत्रे,
=
२
2
व
।
प फ अ x अच
ร
फ
प
ब
फ भ और अ : श्र
www.kobatirth.org
अ-अ,
अ=अ
न
न म ग्रन =त्र,
इस से यह स्पष्ट प्रकाशित होता है कि घातमापक का छेद मूलमापक है ।
(७) यदि एक हि पद के दो घातों के घातमापक भित्र हों त भी उन का गुणन में और भागहार में सवर्णन क्रम से इस प्रक्रम के
(२) रे और (३) रे प्रकार से होता है ।
प
ब
फ भ
न÷म
ब प्रभ+फा
भ
फभ
116
Acharya Shri Kailassagarsuri Gyanmandir
अ
प्रभ- फन
फभ
अ = ग्र
For Private and Personal Use Only
Page #192
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
freeम्बन्धि प्रकीर्याक ।
यहां प, फ, ब और भ दून की संख्या अभिन्न हैं ।
इस की युक्ति यह है ।
प
व
फ
भ
माना कि अ और अ
तो इस प्रक्रम के (५) वे प्रकार से
प
(5)
फ फ = य,
और ::
पभ
.. x
ब
भ
और (अ)भ वा अ=१* ।
पभ अ
प्रकार से
इसी भांति
=
= घ,
फभ =य,
पक्ष
फभ
प
वा चय
पभ - फब
पभ
www.kobatirth.org
फब फभ फभ = य × र ; वा
―
R =
फ
और अ
प
ब
फ
• इस प्रक्रम के (६) वे प्रकार से, यर वा *x =
(९) यह सिद्ध करो कि
प फ
मानो कि अ =
फब 一天 = य
फभ
फभ
फब க
प
फ
थ, ता. च = य,
फब फभ = र
= 1,
भ =य =
प
ख
भ
.. इस प्रक्रम के (६) वे प्रकार से युवा च = =
फभ फभ
प ब पब
फ भ फभ =त्र
फ
1
पभ + फब
Acharya Shri Kailassagarsuri Gyanmandir
और अ
वा
पब फख = य
(यर)
÷र अथवा इस प्रक्रम के (३)
For Private and Personal Use Only
1
फर्म
पत्र
फभ
1
1
१७
पभ + फब फभ
प्रभ- फब
फभ
Page #193
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१९६
freसम्बन्धि प्रकीर्णक |
इस से स्पष्ट प्रकाशित होता है कि इस प्रक्रम के (५) वे प्रकार में
जो
नम यह सवर्णन किया है इस में न और म की संख्या
अ,
धन वा ऋण वा अभित्र वा भित्र होवे ।
=
प 'फ
(१) अ×
अब इस प्रक्रम की व्याप्ति दिखलाने के लिये कुछ उदाहरण लिखते हैं
I
प
फ
(२) अX
य फ
ब
भ
(४) अ":
ब
*
(३) अ 羽
ब -पभ-फब
भ
फभ
ब
फ भ
=
ऋ
www.kobatirth.org
प्रभ-फब
फभ
पभ+फब
फभ
बफ-पभ फभ
12-h-h
प
फ
ब
और भी, अ x *x = अ
(६) अ x x =
=
-ब
फब- पभ फभ
यभ+फब
फभ
अ
पब
प
(v) (3) (9) (
फ
फ
(५)
फभ अ ,
और
प्रभ+फब
फभ
१
यभ-बभ
फभ
ग्र
ब पब
फभ
भ == ऋ
,
प-फ-ब
Acharya Shri Kailassagarsuri Gyanmandir
_प+फ+ब
प
फ.
प-फ -ख
(७) ( : ) : अ = अ ÷चत्र
प - फ+ब
For Private and Personal Use Only
ब
*
ब
(C) ((A)")= चक्य सार {(A)-फ} _अपचय
=
पब
फभ
= प्र
पफा
Page #194
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिवसम्बन्धि प्रकीर्णक।
१००
पफबा
र
पाफ
ब
पफब
प
फ
पब फब
(१०) (क) =अक और (अकब= अबका।
७३ । इस में कुछ उपयोगि गणित प्रकार दिखलाते हैं जो साधारण रोति से उत्पन्न होते हैं।
य
+
,
-यर+पर+T.
(१) य-इ-१,यं-+-य+र.यै- = य+पर+r', इत्यादि ।
तो इस से यह जान पडता है कि य-र" यह य- दस से निःशेष होगा नो म संख्या धनात्मक और अभिन्न हो । अर्थात य-1-4-'+म-r+A + इत्या० + यस-+F(२) जब कि यF-१,
"
य
म -1 रय र+इत्या०+यर
+
T
+
+र
य य
य
-र
+
य+र'
मे
यर - घर +र,
२-या
+
र,
२
य+1
य-यर + यर-1+२
यिकर
य+र यकर
य
- य
+यर-यर+र",
+ ई = य-यर + यररयर+यर'-'+चर
HAR
87+य
- य
या -12
इत्यादि।
१३
For Private and Personal Use Only
Page #195
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
૧૦:
भित्रसम्बन्धि प्रकीर्णक ।
तो इस से स्पष्ट है यदि म यह कोइ धनात्मक संख्या विषम
म म
हो तो
+ यह य + र से निःशेष होगा । अर्थात्
म
य +र य +र
म
म - १
म
=य
www.kobatirth.org
म
य - र म- १
य +
म-२ -- इत्यादि - य
म-२
य
र+य
म म
और जो म कोइ धनात्मक संख्या सम हो तो य + ₹ इस में
य + र का भाग देने से २र
यह शेष बचेगा इस लिये जो म कोइ
धनात्मक संख्या सम हो तो य + ई से निःशेष होगा । अर्थात्
म-२
म-३ - य - य र+य T
Acharya Shri Kailassagarsuri Gyanmandir
म
म
२ वा
इत्या० + पर
म- १ +र
म-२
म
-र यह य +र
For Private and Personal Use Only
म - १ |
- र
७४ | यह स्पष्ट है कि जब कोई राशि घटते २ शून्य हो जाव तब फिर वह और नहीं घट सकता इस लिये ऐसे घटने को उस राशि का परम ह्रास कहते हैं । और जब कोइ राशि बढ़ते २ ऐसा बढ़ नावे कि जिस को कोइ इयत्ता अर्थात् परिमाण न कर सके तब उस की परम वृद्धि होगी । इस लिये ऐसे बढ़े हुए राशि को अनन्न राशि कहते हैं ।
जब किसी राशि का परम ह्रास हो जाता है तब उस को ० दूस चिह्न से योतित करते हैं और जब कोई राशि अनन्त हो जाता है तब उस का मान दिखलाने के लिये ० यह चिह्न लिखते हैं ।
(९) = ग इस में यदि अ का मान सर्वदा एकरूप रहे तो स्पष्ट है कि ज्यो २ क घटेगा त्यो २ ग बढ़ेगा इस लिये जो क का परम ह्रास होवे अर्थात् क शून्य होवे तो ग की परम वृद्धि अर्थात् अनन्त होगा ।
Page #196
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भित्रसम्बन्धि प्रकीर्णक । :: अ = और :: अ ० n और अ = । (२) जब कि अx० = ०,तो : = अ, :: ०४० = .:. : =०, और :: अ = » .:. अ. वा, : = » । और भी :: = » .:. अ.अ = » 0 ___ अर्थात् अ वा , : = इस से यह सिद्ध होता है कि इस का वा इस का मान कोई सान्त अर्थात् परिच्छिन्न राशि वा शन्य वा अनन्त भी होता है।
(३) कभीर भित्र पद में किसी एक राशि का उत्थापन करने से उस भिन्न पद का रूप ऐसा : वाळ ऐसा हो जाता है। क्योंकि उस के अंश और छेद में ऐसा एक खण्ड रहता है कि जिस का मान • वा » होवे । परन्तु : वाळ इस पर से उस भित्र पद के वास्तव मान का ज्ञान नहीं होता इस लिये अंश और छेद में जो खण्ड • के वा के समान हो उस को बैंक देने से उस भिवपद के वास्तव मान का ज्ञान होगा । और वह खण्ड अंश और छेद का अपवर्तन है इस लिये वह (४८), वा (४८) वे प्रक्रम से स्पष्ट होगा।
इसी युक्ति से भास्कराचार्य जी ने लीलावती के वविध में कहा
है कि
खगुणश्चिन्त्यश्च शेषविधा। शून्य गुणके जाते खं हारश्चेत् पुनस्तदा राशिः ॥ अविकृत एव जेय इति ।
।
य -३ य+२ स भित्र पद का मान क्या है? जब य%२
उ
For Private and Personal Use Only
Page #197
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१८०
भित्रसम्बन्धि प्रकीर्णक ।
म
उदा० (२) २ य - ७
य
यहां
य -३य+२ (य-१) (य-२)_य-१, य+य,-६ (य+३) (य--२) य+३ :-" यह उद्दिष्ट भिन्न पद का मान है। २ यः -- ७ य -३ य+१८ दस का मान अलग २ को
३ य३ - १३ य+८य+१२ जब य =२ और ३। पा २ यर -७ य-३ य+१८ =२ य+३
३ य३ - १३ यर +८य+१२ ३य+२ . :- जब य = २ और :-१६ जब य = ३ ।
००
OM
उदा० (३)
क्स का मान क्या है ? जब य= अ। यहां अ-य -+-य + A-३य + इत्यादि + अयस-+ य
इस में मो अ और य के घातों के घातमापक क्रम से उत्तरोत्तर घटते और बढते हैं इस से स्पष्ट जान पड़ता है कि इस में पदों की संख्या म इतनी है। अब जो य = अ हो
तो : = अम +# +अ + इत्या० म पद = म. अग।
म-१
(य-र)२ . उदा० (8) P . इस का मान क्या है? जब य =र ।
MR +
यहां
0/0
य+र
उदा० (५)
६५+५ य-६ एय- १२य+४
इस का मान क्या है? जब य = ३ । ६य +५ य-६ २य+३ स्य-१२ य+8 ३य ... = ० ।
यहां
For Private and Personal Use Only
Page #198
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
उदा० (६)
यहां
जैस
වද්
emmmn m
대대대대
+।।
미지객객
1-1-1
य+१
य
+1+1 +1+ T
३४
१००
99,
१०००
३२७
१००
freeम्बन्धि प्रकीर्णक |
+1
। जब कि
WWWW
1 ------
""
www.kobatirth.org
य
my
momy
७५ । जिस भित्र संख्या का छेद दस का कोइ पूरा घात हो उस fra संख्या को दशमलव कहते हैं और इस में छेद की संख्या नहीं लिखते किंतु उस को दिखलाने के लिये केवल छेद के घातमापक की जितनी संख्या होगी उतने अंश में एक स्थान से स्थान गिन के वहां पर ऐसा बिन्दु करते हैं इस बिन्दु को दशमलव बिन्दु कहते हैं ।
इस को ३ यों लिखते हैं ।
इस का मान क्या है ? जब य - ३ ।
दशमलव |
.३४
य - ७य +9 ६य- १३
GOO
३.२०
२०००
१० १०० १०००
Acharya Shri Kailassagarsuri Gyanmandir
F
=17
3
त
२०x१० त+१
१०
० = २.७० = २.७०० = = 500000..
For Private and Personal Use Only
१८१
त शून्य ।
इस से यह स्पष्ट है कि दशमलव के ऊपर चाहो उतने तो भी उस का मोल बिगड़ता नहीं ।
'शून्य
देओ
Page #199
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१८२
है
७७ । जब कि
५८६४० ५००००
S
९००० ६०० ४० +
+
+
+ १००० १००० १००० १००० १००० १०००
Ε
= ५० + C+ + १०
तो ५९.६४० = ५० + C+
www.kobatirth.org
भिसम्बन्धि प्रकीर्णक ।
तो द =
त
१०
+ १०० १०००
६ 8
+ + १० १०२
इस से यह स्पष्ट प्रकाशित होता है कि दशमलव में दशमलव बिन्दु की बांई ओर अभिन्न संख्या और दहिनी ओर भित्र संख्या रहती है और भी इस में अभिन्न संख्या में जैसे बांई ओर से दाहिनी ओर उत्तरोत्तर अङ्कों के गुणक दशमांश दशमांश होते हैं वैसे हि आगे भिन संख्या में भी होते हैं अर्थात् दशमलव में अङ्कों की स्थिति वैसी हि रहती है जैसी अभिन्न संख्या में है । इसी लिये दशमलवों का संकलन और व्यवकलन उसी भांति बनाते हैं जैसा अभिन्न संख्याओं का एकादि स्थानों के अङ्कों के नीचे एकादि स्थानों के अङ्क लिख के बनाते हैं ।
जैसा ९००४.५०३
२९१३.८४
१२६१८:३४३
और द
योज्य |
योजक ।
योग ।
"
७८ | दशमलबों के गुणन आदि परिक्रमों की उपपत्ति । मानो कि द और दं ये दो दशमलव हैं और इन में क्रम से त और तं ये दशमलव स्थान हैं और इन के दशमलव बिन्दु को मिटा देने से जो अभित्र राशि बनेंगे वे क्रम से दा और दां हैं ।
दा
दो
S
१०३
१०
(१) दशमलवों का गुणनफल = दर्द
८०४.१९
वियोज्य |
६२. ३२५८ वियोजक |
७४१.८६४२ चान्तर ।
Acharya Shri Kailassagarsuri Gyanmandir
#1
दा
For Private and Personal Use Only
X
दाद
त+तं
१०
Page #200
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
भिसम्बन्धि प्रकीर्णक ।
१८३
इस लिये दशमलबों का गुणन अभिव संख्याओं के गुणन के नांई बनाते हैं और गुण्यगुणकों में जितने दशमलव होंगे उन के योग के समान गुणनफल में दशमलवस्थान करते हैं ।
जैसा
(अ) यदि तं > त, तो
२०८३४४
३४७.२४ गुण्य
९.०३६ गुणक
१०४१०२
३१२५१६
३१३०.६६०६४ गुणनफल ।
-
(२) दशमलवों का भजनफल
इस में जैसा तं यह त से बड़ा वा इस के समान वा इस से छोटा होगा वैसा इस भजनफल का रूप अलग २ होगा ।
द द तंत x१०
दं
दां
इस लिये दशमलवों के भजनफल के लिये उन का अभिव संख्याओं के नांई भजन करने से जो लब्धि अभिच होगी तो उस पर भाज्य के दशमलव स्थानों से भाजक के दशमलव स्थान जितने अधिक होंगे उतने शून्य देते हैं ।
जैसा
२०९८८
१८७४०
दा दां
२२४८८
२२४८८
त
Acharya Shri Kailassagarsuri Gyanmandir
१०
भाजक भाज्य
३.०४८) ९५९४८.८ (२५६००
४९६
=
भजनफल
For Private and Personal Use Only
१०
1
Page #201
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१८४
भिवसम्बन्धि प्रकीर्णक ।
द दा (अ.) यदि तं = त, तो, इस लिये जिन के दशमलवस्थान परस्पर समान होंगे उन का अभिन्न संख्याओं के नाई भजन करने से जो भजनफल परा आवेगा तो उस में दशमलवस्थान नहीं करते ।
जैसा
भाजक भाज्य भजनफल १४.७६) ३४६४१.७२ (२३४७
२९५३ ५१२१
४४६८
६९३७
५९०४
१०३३२ १०३३२
(अ.) यदि तं <स, तो इ-हा
इस लिये दशमलवात्मक भाज्यभाजकों को अभिच मान के भजन करने से यदि भजनफल निःशेष आवे तो उस में उतने दशमलवस्थान करते हैं जितने भाजक के दशमलवस्थानों से भाज्य के अधिक हैं।
भाजक २४.५८)
जैसा
भान्य भजनफल ३.७६३२२ (३.४०९ ७३७४ १००५३
२२१२ १२
For Private and Personal Use Only
Page #202
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
भिन्नसम्बन्धि प्रकीर्णक ।
૧૫ (अ.) यदि दा यह दां से निःशेष न होवे अर्थात दशमलों का अभिन्न संख्याओं के नाई भजन करने से यदि भाजक से भाज्य निःशेष न होवे तो भाज्य पर तब तक एक र शून्य दे के उस में भाजक का भाग देते हैं जब तक भात्य निःशेष होवे वा जब तक प्रयोजन होवे फिर भाजक और शून्यों से बढ़ा हुआ भाज्य इन पर से भजनफल में दशमलवस्थान करते हैं।
------- =
१८.७५।
३.२७
३.२७००००
६.२५
६.२५
१.७
१.५
१.७००००..... १२ .३
=५.६६६६ ...... । .८६२००००००....
-- =.७८३६३६३६...... ।
१.१ जिस दशमलव में एक हि एक संख्या उस के उपरान्त फिर २ वही पाती है और कहीं रुकती नहीं उस दशमलवको आवर्त दशमलव कहते हैं और इस से दूसरे भांति का जो दशमलव है उस को परिच्छिन्न दशमलव वा अनावर्त कहते हैं।
जैसा ऊपर के तीसरे और चौथे उदाहरण में भजनफल आवर्त दशमलव है।
(3) जब कि द = डा सो ढौ = दान है = डा इत्यादि ।
इस लिये दशमलव का वर्गादि घात अभिव संख्या के वर्गादि घातों के नाई बना के उस में उतने दशमलवस्यान करते हैं जितनी मूल के दशमलवस्थान और घातमापक इन के गुणनफल की संख्या होवे ।
इसी की उलटी दशमलब के धादिमल निकालने की युक्ति है ।
For Private and Personal Use Only
Page #203
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१८६ ____ भिवसम्बन्धि प्रकीर्णक ।
७६ । भित्र संख्या को दशमलव का रूप देने से वह दशमलव कहां परिच्छित्र और कहां आवर्त होगा इस का बिचार ।
मानो कि यह उद्दिष्ट भित्र संख्या का लघुतमरूप है । अब दूस के समान ऐसी एक भित्र संख्या खोजनी चाहिये कि जिस का छेद दस का कोइ पूरा घात होवे । सो ऐसा १ = अX१०= ता यह अभीष्ट दशमलव है जिस में दशमलव स्थान त हैं और ता यह अभित्र संख्या
है। अब ता = १०इस में अX १० यह क से अपवर्त्य है और अ यह क से दृढ है । इस लिये (४४) वे प्रक्रम से क से १० यह अ. वश्य निःशेष होगा। परंतु १० यह तो रके वा ५ के घात से वा २ और ५के घातों के गुणनफल से ही निःशेष होगा और किसी से नहीं होगा यह स्पष्ट है इस लिये जो के यह ३५ इस रूप का हो अर्थात __ यों किसी भित्र संख्या का लघुतमरूप हो तो उस का दशमलव सान्त अर्थात परिच्छिन होगा और इस से दूसरे भांति की भित्र संख्या का दशमलवरूप आवर्त होगा। क्योंकि जब इस में क से अ४१० यह कभी निःशेष नहीं हो सकता तो ऐसे भजन में जब से भाज्य पर का एक एक शन्य हर एक शेष पर लिया जावेगा तब से विरूप अन्त्य भाज्यों की संख्या क-१ से अधिक नहीं हो सकती यह स्पष्ट है। इस लिये फिर भाग लेते २ वही अन्त्य भाज्य बनेगा जो एक बेर पहिले बना है और भजनफल में फिर वेही अङ्क आवेंगे जो पहिले आए हैं और ऐसे ही फिर २ आते जायेंगे ।
८.। आवर्त दशमलव का भित्रारूप जानने का प्रकार । यह स्पष्ट है कि किसी पावर्त दशमलव का रूप यह है ।
For Private and Personal Use Only
Page #204
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
दा
+
द .. १० X दा
..ET =
क
त+द
१०
द
(१०
.. दा =
ट
_ १०x
त
verdag
+
भिसम्बन्धि प्रकीर्णक्र
इस में जो संख्या आवर्त दशमलव के आदि में रहती है और फिर
नहीं आती उस का योतक
है जो संख्या वही फिर २ आती है उस का तक क है । और संख्या के एकस्थान का अङ्क पहिले से जिस दशमलव स्थान में होगा उस संख्या का द्योतक त है और क संख्या में जितने स्थान होंगे उन की संख्या का द्योतक द है । अब इस आवर्त दशमलव के समान जो दा यह भित्र संख्या मानो तो
१०
P
क
त+द
त
क
त द
qỗ (q☎ — 1)
त
१) अ + क
www.kobatirth.org
+
द
(१ - १) अ + क
+
+
१०
क
त+द
१०
१०
क
त+३द
क
त+द
समों में सम घटा देने से, (१३ - १) दा
=
+
+
क
त+२द
क त+द
१०
Acharya Shri Kailassagarsuri Gyanmandir
+
(१० - १) ४० + ५
१० x १० - १)
+
उदा० (१) • ५५५५ इत्या० इस का भिवरूप क्या है ?
यहां अ = ० = ५, त = ०, और द = १
आवर्त दशमलव का भित्र रूप जानने के
त द १०(१० १)
लिये यह एक पक्ष है इस में अ, क, त, और द इन का उत्थापन करने से
भित्र रूप तुरन्त स्पष्ट होगा ।
For Private and Personal Use Only
क त+३द
क त+३द
१०
(१३ – १) अ + क
५
୧
१८०
1
उदा० (२) •०२०२०२० इत्या० इस का भित्ररूप क्या
ఎ
यहां = ०, क = २२, त = १ और द = २
+ इत्यादि
+ इत्यादि
Page #205
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
==
... दा
दा =
.. दा
(१० – १) अ + क
q (98-9)
१०
२० ३
९६० ११०
. दा
द
(१०
ရင်
1
उदा० (३) २०३३०७६९२३०७६९ इत्या० इस का भित्ररूप क्या है ?
और द = ६,
यहां
त
द
(१० – १)
२२३०७६०
EEEEEE १३
freeम्बन्धि प्रकीर्णक ।
२, क = २३०७६९, त = ०
द
(१०- १) + क
१) अ + क (१० - १ ) x २ + २३०७६९
१० (१० - १ )
www.kobatirth.org
उदा० (४) • ०९३१३१३१ इत्या० इस का भिन्नरूप क्या है ?
यहां अ ह
=
૭૨ १९६३
९९०० २४०५
२
(१० – १) × ० + ३७
१० (१० – १)
क ३१, त = २, और द = २,
==
1
त द १० (१० - १)
१३२१४२५
९८९००
द
(१०- १) + क
Acharya Shri Kailassagarsuri Gyanmandir
५८०३
४४४
0
१० (१० – १)
उदा० (५) १३.२२७४७७४००४० इत्या० इस का भित्ररूप क्या है ?
यहां
१३२२, क = ७४७, त = २ और द = ३,
(१०३ - १ ) x १३२२ + ०४०
३
qo (202 — 1)
२०
१०४ हल
(१० - १ ) X ०९ + ३१
१० (१०- १)
For Private and Personal Use Only
Page #206
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१८९
अध्याय ५।
इस में समीकरण का व्युत्पादन, एकवर्ण एकघातसमीकरण, अ. नेकवर्ण एकघातसमीकरण और एकघातसमीकरणसंबन्धि प्रश्न इतने प्रकरण हैं।
१ समीकरण का व्युत्पादन ।
८१ । जो दो पक्षों का साम्य दिखलाता है उस को समीकरण कहते हैं उस में उन दोनों पक्षों को = इस चिह्न की दोनों और लिखते हैं । यह समीकरण दो प्रकार का । एक प्राकृत समीकरण और एक कल्पित समीकरण ।
(१) जिस समीकरण के दोनों पक्ष एकरूप होते हैं वा जिस के दोनो पक्षों को सवर्णित करने से वे एकरूप हो जाते हैं उस को प्रा. कृत समीकरण कहते हैं।
जैसा। अ+य= अ+य, अथवा अ-य -य।
(२) विरूप समीकरण उस को कहते हैं जिस के दोनों पक्ष भिवरूप हैं और सर्णित करने से भी एकरूप नहीं होते केवल उन के मान परस्पर समान कल्पना किये हैं उस को कल्पित समीकरण कहते हैं।
जैसा । य+अक इस का अर्थ यह है कि य एक ऐसी नियत संख्या है कि निम में अको नोड़ देने से योग क के समान होता है।
(३) प्राप्त समीकरण के दोनो पक्षों का साम्य स्वाभाविक रहसा है इस लिये उस के पद वा पदों के मान यथेष्टकल्प्य अर्थात् जो चाहो सो हो सकते हैं। और कस्पित समीकरण के दो पक्षों का साम्य
For Private and Personal Use Only
Page #207
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
५९०
समीकरण का व्युत्पादन । कल्पित होता है इस लिये उस के पद वा पदों के मान उस कल्पित साम्य के अनुसार नियत रहते हैं।
(४) कल्पित समीकरण में अध्यक्तपद व्यक्तपदों से संबद्ध रहता है वहां जिस क्रिया से उस समीकरण के पतों का साम्य न बिगड़े और एक पक्ष में केवल अध्यक्तपद को और दूसरे पक्ष में सब व्यक्तपदों को कर देते हैं उस क्रिया को समक्रिया कहते हैं।
(५) कल्पित समीकरण में अव्यक्त का मान वह है जिस से उस समीकरण में उत्थापन करने से वह समीकरण प्राकृत हो जावे अर्थात उस के दोनों पक्ष एकरूप हो जावें ।
जैसा । य + अ =क, इस में य अव्यक्त है और अ और क ये व्यक्त पद हैं। और यहां य का मान क- अ है क्योंकि उत्थापन से अर्थात उद्दिष्ट समीकरण में य के स्थान में क-अको रखने से क-अ+अ = क, वा, क-क यह प्राकृत समीकरण होता है।
८२। इस प्रक्रम में समीकरण के भेद कहते हैं।
(१) जिस समीकरण में एकही अव्यक्त है उस को एकवर्ण समीकरण कहते हैं।
(२) जिस में अनेक अव्यक्त हैं उस को अनेकवर्ण समीकरण कहते
(३) छेदगम और यथासंभव अपवर्तन इत्यादि करने से समीकरण में अव्यक्त का जो घात सब से बड़ा रहता है उस घात के नाम का वह समीकरण कहलाता हैं । जैसा जो समीकरण में अव्यक्त का एक घात रहे तो उस को एकघातसमीकरण कहते हैं। जैसा य = अ। और जो समीकरण में अव्यक्त का सब से बड़ा घात वर्ग ही हो तो उस को वर्गसमीकरण कहते हैं। यह दो प्रकार का एक केवल धर्गसमीकरण और दूसरा मध्यमाहरण । जिस में अव्यक्त का वर्ग मात्र रहता है उस
For Private and Personal Use Only
Page #208
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकवर्ण एकघातसमीकरण ।
१६५ को केवल वर्गसमीकरण कहते हैं और जिस में अव्यक्त का वर्ग और उस का एक घात भी रहता है उस को मध्यमाहरण कहते हैं। जैसे। अय + क = ०, यह केवल वर्गसमीकरण है।
और अय + कय = ग, यह मध्यमाहरण । इसी भांति घनसमीकरण, चतुर्यातसमीकरण, इत्यादि जानो और भी साधारण रीति से।
य+लय + थर्य + . . . . + फय + बय +भ = . इस में अव्यक्त का सब से बड़ा घात म यह है इस लिये इस को मघातसमीकरण करते हैं।
२ एक्रवर्ण एकघातसमीकरण ।
८३। जिस उद्दिष्ट समीकरण में अध्यक्त किसी सच्छेद पद में नहीं पड़ा है उस की सक्रिया।
रीति । उद्दिष्ट समीकरण में जितने अव्यक्त के पद होंगे उन सभों को पक्षान्तर नयन से = इस चिह्न की बांई ओर के पक्ष में कर देओ
और जितने व्यक्त पद होंगे उन को दहनी ओर की पक्ष में कर देओ । फिर उस अव्यक्त के पदों का और उन व्यक्त पदों का अलग २ योग करो। यों करने से बांई ओर के पक्ष में अव्यक्त का नो वारद्योतक हो उस का दहनी ओर के पक्ष में भाग देने से उस अव्यक्त का मान लब्ध होता है। भास्कराचार्य जी ने भी कहा है कि
एकाव्यक्तं शोधयेदन्यपता
पाण्यन्यस्येतरस्माच्च पक्षात् । शेषाव्यक्तनोडरेट्रपशेषं व्यक्तं मान जायतेऽव्यक्तराशेः ॥
For Private and Personal Use Only
Page #209
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१९२
एकवर्ण एकघातसमीकरण । इस में रूप कहिये व्यक्त पद ।
इस में मसीकरण के किसी पक्ष में यदि एक वा अनेक कोष्ठ हों तो उन को पहिले (२४) वे प्रक्रम से उडा के फिर ऊपर का विधि करो। और समक्रिया के समय में जब दोनो पक्षों में किसी का अपवर्त लगता हो तब लगा के फिर क्रिया को बढ़ाओ और (३७) वे प्रक्रम का पहिला
और दूसरा अनुमान जहां पर लगे तहां उस को लगाओ। __ यहां अव्यक्त को = इस चिह्न की बांई ओर करते हैं और व्यक्त पदों को दहनी ओर करते हैं इस लिये बांई ओर के पक्ष को अव्यक्त पक्ष और दहनी ओर के पत्त को व्यक्त पत कहते हैं।
उदा० (१) ७ य+३ = २ य + २३, इस में य का मान क्या है ? पक्षान्तरनयन से, ७य-२ य = २३ -३ योग करने से,
५य =२० भाग देने से,
य=२० = ४, यह मान है। इस मान को उद्दिष्ट समीकरण में य के स्थान में रखने से ७४४+३=२४४+२३, वा, २+३=c+२३,
वा, ३१ = ३१ यह सरूप समीकरण हुआ इस लिये यहां जो य का मान ४ पाया है यह ठीक है । इस अव्यक्त मान की सत्यता दिखलाने हारे प्रकार को प्रतीति कहते हैं।
उदा० (२) १२ य-२१ = ३ य + ३३, इस में य का मान क्या है ? यहां ३ का अपवर्त करने से, . ४य-७ = य + ११ पतान्तरनयन से,
४य-य= ११+9 योग करने से,
३ य = १८ भाग देने से, उदा० (३) ४ य -२ =७ य -११, इस में य का मान क्या है ? पक्षान्तरनयन से, ४य- य-११+२
For Private and Personal Use Only
Page #210
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
उदा० (४) ११ य
कोष्ठ को उड़ा देने से,
एक
एकघातसमीकरण ।
(३७) वे प्रक्रम के (१) अनुमान से, ३य ह य =
..
अथवा पहिले हि भाग देने से, ३ य =
==
।
www.kobatirth.org
-
अथवा य =
उदा० (9) कय
= १०८
१०८ १२
पक्षान्तरनयन से,
भाग देने से,
-
उदा० (५) ५ (६- ३ ) – ५१ = ५९ – २ ( १०- २), इस में य का मान क्या है ?
(१३) -घ) = ६५, दस में य का मान क्या है ? ११ य- १३ + य = ६५
१२य = ६५ + १३
य =
Acharya Shri Kailassagarsuri Gyanmandir
= ई ।
यहां कोष्ठ के आदि में जो पद है उस से भीतर के पदों को गुण देने से, (५८ - १५) – ५१ = ५०- (३४ - ४ यं)
-
कोष्ठ को उड़ा देने से, ५८ - १५ - ५१ = ५० - ३४ + ४ घं पक्षान्तरनयन से, ५ य- ४ य = ५८ - ३४+१५+५१
य : १२५ - ३४ = १ ।
उ० (६) ०८ - ११ (२६ + ७ ) == ९६ - ५ (३८ - १७), इस में य का मान क्या है?
यहां ०८ - (२२ + ७७) = c यं - (१५ यं ८५)
.. १८ - २२य - ०७ = रथ - १५ य + ८५ पक्षान्तरनयन से, ०य - २२य - य
-
ध् + १५य = ८५ + ०७
૧૬૨
- ९८ = १६२ और लय =
१६२ : य =
१६३ -<
=- १८ ।
= ग - घय, इस में य का मान क्या है ?
कय + धय =अ+ग
.. ( क + घ) य = अ + ग, और य =
१४
群
क +घ
૧૦૩
1
For Private and Personal Use Only
--
१८ ।
Page #211
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
अथवा,
अथवा,
୧୧
एकवर्ण एकघात समीकरण |
इस की प्रतीति के लिये य के स्थान में अ + को रखने से ।
क + घ
क
क + कग क + घ
कग - अघ क +घ.
國
क + घ/
आय का अपवर्त पचान्तरनयन से, य + गय
.. य =
: य =
www.kobatirth.org
उदा० (६) य + अकथ =
देने से, य + क
1
w
-ग्र=ग
कग - अघ क + घ
=
अ - क १+ग
अग - घ
1
न
-
Acharya Shri Kailassagarsuri Gyanmandir
अघ + गघ क +घ
प्राकृत समी०
गय
1
- अगर इस में य का मान क्या है ?
,
अ + ग
क + घ/
यहां अक + य - कग + कय =
गध + गय
गय गघ
क + कग
आय + कय अथवा, (अ + क - ग ) य = गध - क + कग ।
गद्य - क + कग अ + क - ग
अभ्यास के लिये और उदाहरण ।
H
- क; वा, (१+ग) य = - क ।
उदा० (९) अ (क + य) - क (ग - य) = ग (घ + य), इस में य का मान क्या है ?
(५) ७ ३८ = ३य - ५, इस में
(६) २९– ४य +६= ५ + १०, इस में
(७) ० य२ - ५८ = २३ य, इस में
1
(१) ३८ - १७ = २८ + ५, इस में
(२) ५८ + १३ = २० - २य, इस में
(३) य - २८ + ३य - ४य +५ = ७, इस में
(४) य + ९ = ३य + १, इस में
For Private and Personal Use Only
हुवा
I
य = २२ ।
य = २ ।
य = २१|
य = ४ ।
य = २ ।
३।
य - ४ ।
7 =
Page #212
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
य३ ।
एकवर्ण एकघातसमीकरण ।
૧૫ (८) ३य + ७ = १२+३(५-य), इस में (C) ५(२य -३) + १५ = ७य + २ (४ य -३), इस में य=१३। (१०) य-३ (५-४ य) = ७ (३ य-८)+, इस में (११) ३ (य-9)+२ (३य-५) = १७- (५य -८), इस में
य । (१२) ८य + ७ (३ य-B) = २६ - ३ (२य - १७), इस में य३, (१३) य+२ (य-४)- ० (य+५) = ६य-७,
इस में
-3(२
-५७)
दस में
(१४) ३ (२ य+9)+५(३ य-४)= १८५-८(५ य+२३),
य । (१५) ३५ (१३ -६य)-२८ (-५ य) = १८९ - १४ (७ य-३). बस में
य=१। (१६) (य+ ७) (य-३) +७ = (२५-७) (य+५)- १६,
इस में (१७) ३३२ - (य-५) (२ य-३) = (य+२) (य-१)+ ७१, इस में
य । (१८) ४ य२-१७ य+ ७ = ११+ य- य-४. इस में य=७ । (१९) (य + १) (य -२) (य + ३) = (य- १) (य+५),
दस में (२०) ८(य+५) (य + १३)- ११ (य+२)(य+ १३) =२४ य
-३ (य+२) (य+५), इस में (२१) (य-३) (य-५)- ४ (य- ४) (य-५) = (य- १) (य-६)
- ४ (य-३) (य-४), इस में (२२) (य- १)(५ य-४)- (य-२)(२ य+३)-(य-३)(३ +१).
-२य-१, एस में
For Private and Personal Use Only
Page #213
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
१९६
एक
एकघात समीकरण ।
(२३) (22 + 4)2 – (६२ - १) १ = ४६२ - य + १०, इस में य = १ (२४) ४ (य - ३य - १०) १ - ३८ = (२८२ - ६ - ४९ (२८ - ३) २ - १०, इस में
+ २९) २
(२७) य · क = गय - घ चय, इस में
-
(२८) थ + कर =
www.kobatirth.org
(२५) (य + १) २ (य + ३) २+४ (य + २) २ = ( + ४ य + ५) २ + ५ (य- २), इस में
य
(२६) य + ३ = य + ५, इस में
२ - कथ, इस में
(C) अ· कथ + ग
(३०) (अ + क) य - (क) य इस में
घ - चय, इस में
(३८) चाय (थ - )
(३१) ३य - ४
(३२) अघ - २ (३३) अथ + क (थ - ग ) - घ - च (य - छ),
- क) य = (
(३४) अ + क (२ इस में
(३७) (य + अ) (य - क) इस में
- क१,
-
Acharya Shri Kailassagarsuri Gyanmandir
(ग- २य), इस में य
, इस में य
(I — H) (T2 — II), इस में
य =
कय +
२ = अकथ ४ 'य', इस में य
-
=
. (य-ग) (य -घ)
य =
(३६) (य + ३ क१) - क (य + ३२) (क), इस में
घ =
For Private and Personal Use Only
+ क) य - करे,
य
य =
-
(३४) (+य) क (२८ + ग ) = - क (३ य + घ), इस में
=
कय (य क) + क ( - क)
य = ५६ ।
ग+च
य = - क ।
क - घ
अ + ग - घ
क - च
२ ।
य= ∞ ।
य =
一
क - अ
२ कग+छ+च अ + क +च
२ क
अ ( ग + ४) - क +३
कर
य =
I
य = अ + क ।
1
क (ग -घ) अ + क
1
।
अक्र + श्रा अ + क
+ अ + करे ।
1.
क + गय क ++छ ।
1
Page #214
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
प्र
-
क
+
ग
एकवर्ण एकघातसमीकरया । (३९) अ (अय-२क)- य (क-गर) = अर+क-ग (२ अय+ग), इस में
+क -ग (४०) (+य) (अ+२य) + (+२ य) (अ+३य)
-(प्र-य) (अ-२ य) =२(अ+य) ( +३य), . इस में
८४। जिस उद्दिष्ट समीकरण में अव्यक्त एक धा अनेक सच्छेद पदों में पड़ा है उसकी सक्रिया ।
रीति । उद्दिष्ट समीकरण में (EE) वे प्रक्रम से छेदगम करके सब छेदों को उड़ा देओ। फिर उस की समक्रिया ऊपर के प्रक्रम से तुरंत होगी। __ जाना चाहिये कि इस में जो सच्छेद पद के अंश में वा छेद में सच्छेद पद आवे तो उद सच्छेद पदके अंश और छेत्र इन दोनों को ऐसे एक हि पद से गुण देओ कि जिससे उस पद के अंश में वा छेद में केव न रहे फिर पति रीति से समक्रिया करो।
उदा० (१) १-= ५-यू, इस में य का मान क्या है। यहां छेदगम करने से अर्थात्, १२ दस वेदों के लघुतमापवर्त्य से हर एक पद को गुण देने से,
६य-४ य%D६०-३य :. २य+३ य = ६०; घा, ५ य = ६० ।।
और य= = १२ । उदा० (२) य ११ + २य- = ४.य, इस में य कितना है? यहां छेदगम करने से अर्थात समीकरण को
६ (य + १) + * (२ य - ७) = (४ य+9) . इस भांति लिख के दोनो पक्षों को ३० इस छेदों के लघुतमापवर्त्य से गुण देने से, ५(३+ १) + ३ (२ य.- ७) = व मा
For Private and Personal Use Only
Page #215
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
१९८
एकवर्ण एकघातसमीकरण । ५५+५+६य-२१ =८य+१४
५य +६य-८य - १४ -५+२१ वा, ३य = ३० ; :: य = ३० = १० ।।
इसी भांति जिस समीकरण में सच्छेद पद का अंश संयुक्तपद होगा उस की समक्रिया करो। ...
उदा० (३) ५य + य+ ३ २ - २५३ - य है । इस में य का मान क्या है?
यहां समीकरण को ५य+ ३ (य+३) -१ (२य - ७) = 1-2 (य + ११) इस रूप में लिख के ६ से गुण देने से, ३० य+३ (य+३)-२(२य-७) = १५४ - (य+ ११) वा, ३० य+३ + -४ य+१४ - १५४ -य-११ : ३० य+३ य - ४ य + य = १५४ - ११ ---१४
३० य = १२०
... य-१२० =४। उदा० (४) "य -२२-+ १९३२-३ = ३३१ - य+२०१ इस में य का मान क्या है? यहां समीकरण को
१३ (५य - ७)-(२५-५) + ११ (११ य - ३)
==% -१८ (य + २०१) इस रूप में लिख के दोनों पक्षों को ८४ से गुण देने से,
३५ य-९-८ य+२० + 28 (११ य-३) = २८०० -३५-६०३ पक्षान्तरनयन से, ३२ (११-३) = २२६-३० य
For Private and Personal Use Only
Page #216
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
al,
... एकवर्ण एकघातसमीकरण ।
4 (११ य - ३) = ७४२ - १० य छेदगम से, ४४ य- १२ = १२६१४ – १७० य :: २१४ य = १२६२६; और य = १२६२६ =५९ ।
इस भांति के समीकरण में अर्थात् जिस में सकल छेदों का लघुतमापवर्त्य बहुत बड़ा हो उस में पहिले जितने बहुत छेदों का लघुतमापवर्त्य छोटा हो उन को उड़ा के पक्षान्तरनयन से सब अभिन्न पदों को एक पत में कर देओ और फिर छेदगम कर के पूर्ववत् क्रिया करो। इस से समक्रिया में लाघव होगा।
२ य+ ३य-१३ _ ५ य+: .. उदा० (५) ११ , इस में य क्या है? यहां उक्तरीति से अंशों के छेदों को उड़ा देने से,
६० से गुण देने से, २० य +३ - २(४५ यु-१३) = २० य+१ पतान्तरनयन से, २ = २ (४५ २-१३), वा, ४५ य - १३ = १ छेदगम से, ४५ य - १३ = ५; ::४५ य = १८; और य = = ३ ।
अथवा जिस समीकरण के छेदों में छेद नहीं हैं केवल अंशों में हैं वहां पहिले साधारण रीति से छेदगम कर के पूर्ववत् क्रिया करते हैं। जैसा इस समीकरण में छेदगम से अर्थात छेदों के लघुतमापवर्त्य ३० से दोनों पक्षों को गुण देने से,
१० य + ३ - ६य + १३ -- १० य+ । ' पक्षान्तरनयन से, - ६-३-३-३ =-१-१३ घा, य = १ ५३ = १६ . य = = ३ ।
For Private and Personal Use Only
Page #217
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकवर्ण एकघातसमीकरण ।
य+६
य-
IPL
३
-
-
४
६
उदा० (६) २ य -१ य--
- = ---- -- इस में य क्या है? १२ से गुण देने से, ८५-२-३थ + य -- ७ = १०+ ५
३य
_य+६
६य-१८ = २ से गुण देने से, १२य - ३८ =३य – य+६ ५ से गुण देने से, ६० य – १९० = १५ य-य-६ पत्तान्तरनयन से, ६० य-१५ य + य = १६० -६ वा, ४६ य = १८४; :: य = १ = ४ ।
३य-१ २१+१ उदा० (७) -
३ = ३२३, इस में य क्या है? यहां उक्त रीति से अंश के और छेद के छेदों को उड़ा देने से, . १८३-३ १२ य +३ = ४३ । १२ मे गुण देने से, ५४ य - ६-४८ य-८ = ४३ पज्ञान्तरनयन से, ६य= ६० ; :: य = = १० ।
उदा० (८) ३+३३- है, इस में य का मान क्या है?
यहां हर एक पद को १२ य से गुण देने से, ६+:- ९= ३० य, वा, ५ = ३० . य = ५.१३ = १३ = २३ ।
उदा० (९) ५य ११७ ३य - १३ = ? य+१ + ११३-१४, इस में य का मान क्या है?
यहां दोनो पक्षों को २४ से गुण देने से,
-
For Private and Personal Use Only
Page #218
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२०१
एकवर्ण एकघातममीकरण । २० य +६८ - ९य + ३९ = ३य + ११ य - १४ पक्षान्तरनयन से, १२१ = ३२ 25 छेदगम से, १२१ य – २६६२ = ३२ य +६ पक्षान्तरनयन से, १२१ य - ३२ य = २६६२ + ८
वा, ८९ य = २६७० ; और य = २ =३० । इस जाति के समीकरण में अर्थात् जिस में कोइ एक छेद संयुक्त पद हो उस में पहिले और छेत्रों को उड़ा देओ फिर पतान्तरनयन से सब अभिन्न पदों को एक पक्ष में करके छेदगम करो। उदा० (१०) ३(३+२य), २4य ...
, -४य +१+३य
५+ य, इस में य का मान क्या है? तब छेदगम से, ३ (३+२ य) (१+ ३ य) + (२+ य) (३ - ४ य)
= (-४ य) (१+३ य) (५+ य)। वा, +३३ य । १८ य+६-५३-४ य = १५+२०य -५५ यर
- १२ १३ . पक्षान्तरनयन से, १२ य = -६९ यर
.:. ४ य = -२३; और य =-२३ =-१३,
अथवा इस प्रकार के समीकरण में अर्थात् जिस में अनेक छेद ऐसे होवें कि जिन में कोई दो छेद परस्पर अदृढ न हों उस में छेदगम के लिये अभिव पदों को एक पत में कर के एक एक छेद से दोनो पक्षों को गुणते जाओ। जैसा - इस समीकरण में पहिले ३-४ य से गुण देने से,
६-५ य -४ य = १५-१७य-४यर
+३य पतान्तरनयन सं, पमा
६-५य-४ यर 1
=६-२३ य-४यर
+
E
For Private and Personal Use Only
Page #219
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
२०२
एकवर्ण एकघात समीकरण |
फिर १+३य,
से गुण देने से,
६- ५८ - ४०२ = ६ - ५८ - ७३८२ - १२८३
पक्षान्तरनयन से, १२८३ = - ६९ प ; : य = -
Y
४य+१
उदा० (११)
यहां ५ य
=
-
२ से गुण देने से, ४थ + १ -
अथवा, २८८२ - १३ य + ८ =
.. य =
ग्रक, से
उदा० (१२)
३५ य२ - ४ य - ४ १५ य + १
फिर २ (६ - १) अर्थार्थ १२८ - २ इस से गुण देने से,
४८ + ४य - २ - २० ८२ - १० य + १०
४२० य३ – ११८८२ - ४०८+६ १५८+१
१४७ ४९
उदा० (१३)
छेदगम से, यर =
पतान्तरनयन से,
क
www.kobatirth.org
४ य +५ * ३ (६य - १)
फिर १५८ + १ से गुण देने से,
४२०८३ - १६० य + १००य +८ = ४२० य - ११८८२ - ४० य +
पक्षान्तरनयन से, - ४९ य
१४७ य; वा ४९ य = १४७ ;
य
अय कय
क अ
गुण देने से, कय = अ + क
१
: य =
--
य
३।
+क
- कर
ू. य =
-
氣
+ क
क
४२० य – ११८ य - ४० य +६ १५य+१
1
- य
य
क
(अ + क) य = अक
प्रक + क
क
1
Acharya Shri Kailassagarsuri Gyanmandir
७+२ १५८ + "
२० य + १७८ - १० २६य - ५)
इस
(अ + क) य + य
I
ติ
इस में क्या है ?
इस में य क्या है ?
For Private and Personal Use Only
'य क्या है?
Page #220
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकवर्ण एकघातसमीकरण । य-अर क
-=-इस में य क्या है?
उदा० (१४)
कर-
अ
केदगम से, अय- अरे = करे -- कय पक्षान्तरनयन से, (+क) य = अ + कर
अ+करे ... य= क = अ -अक+के।
य= ८४ ।
२
.
३य
अभ्यास के लिये और उदाहरण । (१) य+ 2 = 2 + 9, इस में (२) - + य = १९, इस में (३) य- 2 + - ३ + य = य+५, इस में य = १५ । (४) ५य + य + ११ य ११३, इस में
य=६०। (५) २+१ ३ य-9 + यु +५ = ५, इस में (६) ७५-१.५य.-१ = १८य - १९, इस में य=३ । (७) य-१+ २५-६ - 1 - य३, इस में। (e) २य +३+ य = य + य - ३६, इस में य= । (c) ३य + १२८५य = २य+य, इस में य=१ । (१०) ७ - य = १+य, इस में (११) ७य ६५ ४ य-१-७-३२३, इस में य = १३ । (१२) २य१ + ३ ३ ४ .६३१ = १, इस में य=७ । (१३) य+५२-३+ 2 + ४ य-१० = १६, इस में य =५ । (१४) १ + २
= वह इस में य=२।
Y
.
य-१, ३य-५
५य-
_
१
..
For Private and Personal Use Only
Page #221
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
२०४
८ य
(१५) प०५
(१७)
(१६) १२८ +
इस में
इस में
य - ७ (15) १५ इस में
(१९). ह्य
(२०)
(२४)
(२५)
इस में
+
य
४८ - १ १४८-४ ६६
०७
इस में
+
इस में
५ य +२
एकवर्ण एकघात समीकरण ।
१३य - ६ १६५
१२+२९ १४३
(२१) ३८+७
य -
(२२) ५८–७–०८–८
(२३) ५८ - २१ इस में
३८ - २ १०
(२७) य + इस मैं
३१८-६
२८ - १९ १८
(२६) १९ + इस में
२८ - १३ २१
www.kobatirth.org
+
+
-
५ य + ७ ३
१८- २२ ३५
+
+
११५--- १४
ध्य- ४७ १८७
३ (य
+
२+४ ३३.
-
१७. +९ २५ य - १. +
2
२३१
३८५
00
य - ९ + २२
२० +९
३८- १५ ३५
E
心の
+
१८
१०५
१०य+९४ २२१
―
ल्ह
३य +१३ १४
१३य -
ᄑ
५८ - १३. ९(य- ३) १२
३५
४२०
११ + २६ इस में
,
य- ४ - - 3
=
पूल
४ य - ११
३३.
४ (य +१) ४५
य - ७
,
=
Acharya Shri Kailassagarsuri Gyanmandir
3
የቂ
-५
१० य+१
+
ठ, इस में
+
For Private and Personal Use Only
घ - १९
७+१२ ५३
--
ख :
इस में
१३८+६ ५१
111
४
इस में
५८ + १०४ १०८
थ=
+ १०
+२२।
य = २ ।
३
५३'
१३ ।
य -
य = ६ |
य = ४४१
य =७।
1
य = ४ ।
य = २९ ।
+१६,
य
घ - ३ ॥
૧૦
य - १।
य
=६।
= १९२८ - २८ - १५ - ५१,
य = १७ ।
Page #222
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
य=१० ।
एकवर्ण एकघातसमीकरण। (२८) य + (य')- (य+') = ५७ - ४ ५,
इस में (९) ४ (४ य+१)-१३ (य-३) + 26 (4-१).
= (६ य + १), इस में (३०) २य ३ - १३ (य + २२+१) = ३ य--१०),
इस में (३०) (य१०) (६५.-१) - (21(१३-")
-{५य + २ = } { }}. इस में य । (३२) ३ य -१ - २१ यु-३ ४ य+3 ५ य-२ ___ = ४ य-9 x २३ य + ११०, इस में य=३ । (३३) ३.७ य +.०१९ य =. ०३४६६ +. २५ य, इस में य=.०१ । (३४) .३७ य + २. ७५३४ -- २८३ य = ६. २५५ य, इस में य = ३ । (३५) .५ य+.८३ य = २.०८६ -- ५ य, इस में य:- १ ॥ (३६) . य+.4+.९य +. य = ४.५०, इस में
(३७)
2-+-
- =२६, इस में ..
.
..
य३।
(३८) ४३ य +8 २ -१३३३५- १ .
-- + --६, इस में य=६ । (३९) य-३६ १७ १८३२ ८१, इस में य२९ ।
For Private and Personal Use Only
Page #223
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२०६
. एकवर्ण एकघातसमीकरण।।
प्र
(४०) १३३ + १ ४५२-१३-३- ११ - इस में य =५ ।
.
२
GIC
"
इस में
(४२) य+७-य-५ = ३८, दूस में
य
-५।
SPIRI
+ma
य-य-३ = १३३ - य-, इस में
य-३८ ।
है
IN
عالم
ATI
य+२१२
१०
य= १ ।
य+११ य+२ ४ -३२ (४६)
, इस में य+१ य-१५ २य +१.. (४७) - +२१ = १० +
य - ७ य+8 १० - १
इस में
य=१३।
६य-श्य+. (४८) ७य-
६
=
२
य+११+ य+१३,
१३
. इस में
(४९) २य+
२
= १४ १५०३३ इस में
यम् ।
For Private and Personal Use Only
Page #224
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकवर्ण एकघातसमीकरण ।
AT
Cld
100
इस में
4
૧૨
Mim
(५१) , + ____२य + १९३.६.२...
- १२
६
१७४० इस में
य=११॥
(१२) ११ य + १.५ - .७१ य-२= १०.४, इस में
य=६ ।
य=91
य=५। य=२।
(५३) १५-१५ =२, इस में (५४) ३+= 2+ ३, इस में (५५) १७-३य + य - ईय + १६ १४१, इस में (५६) य-य-३- सईया इस में (५७) ३ +२+यइस में (५८) यर -३१ = यइस में य=1 (५९) ६ य-३१३ + ११-१५ - २-३, इस में य=४ । (६०). ७.४५ +१३+१६ -२य १० = १७ - २५,
"
--
प
२य+१७
य
-
२
श्यप २०य--१
-
१
४२
इस में
1 (६४)
३य+२.२(य-१०-११ य+३-७य
२० + ५ -१५ य+0
इस में
य=
1
(ब) कच एक चर) इस में
TI
य%४
.
For Private and Personal Use Only
Page #225
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
२०८
(६३)
(६६)
-५य
(द्दल)
१
(६४) २(३८+७) + ३ य
(६५)
(६८) २८
१
の
(६९) य+५
(93)
य +२ +
य
१, ३८ + ८
+
१४
इस में
२य+११ य -
+
+
91
८
(७०) य+ इस में
ह'
य - ५
य+११
raj Prataसमीकरण ।
५
य
+
(७१) य+र
४ (७२) हाथ +४) इस में
य
५
य +२
३ य - ७ ४८- - ११
इस में
+
५
य+१२
५६+४
११ 'य+५
य +9
१.
य े - ५८ + १७
इस में
=
www.kobatirth.org
--
३ य
+
य२.
1
9
| | |
9
२२ + च
४ य
य - १
य - हे
श्य+१'
४
mo
१०
य +७ = २, इस में
+
,
२८ - १,
थ
Y
३ य +१७ ५
-
३ य + १३
इस में
३८ + १ ३५
२, इस में
+8 इस में
य ४
इस में
इस में
य +
9 १८(य + ७)
=
३
य - ६ 3 ४ (य
Acharya Shri Kailassagarsuri Gyanmandir
Um
(४) य + = ++ इस में य -- ५ -३ य-१०
- २ य NIS य
..
(७५)
३)
दय
,
q +8+ य* + ६४
श्य+५
=
(य +२) (य+५) (य +१३)
य +
For Private and Personal Use Only
ध्यं - १, इस में य = ११॥ -
य =
२ (य- २),
,
३ य
य = २७ ।
य
य =
११ ।
य = २३ ।
१६।
घ = ५।
य = ५.।
य =
३
(य + () (य +४) (य+७) १
य= २ ।
"
य -
३७ ।
31
य = ९ ।
य = ६३ ।
Page #226
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
- एकवर्ण एकघातसमीकरण । पर-३य+३ य२-९ +३१ २-५ य+s (७६) य-२ + य-५- य-३
य-७ य+ १३ ___+--- , इस में
य-३३॥ (७) अय- १ = क्य, इस में
य= अक।
य
(७८) य+++
= १,
इस में
य =
ऋकग क+ ग+कंग।
चय
' य +क-ग ! -++, इस में.य-कछ (गट + घज).
घट (अछ-कच) । कष, गय ....
प्रकार कग + 7+H = अकग, इस में य = ---
अकरार ।
__ +
य
+
क
।
(८२)
य यनक, इस में ____यअ+क। (३) -य_+_य-=-अ, इस में +क' अ-क अर-कर
य१
"क
करे अरे .
+य=- -
+
इस म
य-अ-क।
,
य
+
क
(
+
क
-
ग)
(८५) 4-+इस में (८६) 2 + य य छ, इस में
-- अ, इस में
+
य = (अ+ - ग छ ।
य
अकर .
अ-य-अग= अक-य, इस में
य= क (क+गा ।
१+
१ =
१
.
य+
+
अ
२
य
।
(८०) य + अ-2-=-४क, इस में
य-अ य+अ य-अर' इस म
यक।
य
+
१५
For Private and Personal Use Only
Page #227
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
-
प्रक
(१)
FIE FR?
PIN
ग
एकवर्ण एकघातसमीकरण । क-य-क, इस में य- +-+ = २, इस में य+२ अर य-अ य+अ यर-अर य+अ य -प्र इस में
-अ (क+२)
क-३
(60 अप्रय समय + य अपाय मया
-
+
२
चार+
य+यर
+
४
इस में
N
य=
।
भ
क
() (-क (य+अ) (
-काय+क- (य+
(य+क)'
(EE) _
१
(अ-क) (अ-य)
क (अ-क) (क-य)
+
'य (अ-य) (क-य)
यक।
२. रस में
वारकर'
य+ + ग -का (क-ग) (क
-य)
.
य + + क -ग)(क -ग) (ग-य)
य+ क +ग + ( -क ( -ग) (अ-य)
दूस में
य+ग
+
(
-) (क-य) (ग-या"
य +क।
य
३ अग
+क
अक ' (अ+क) '
(२
अ (
+क) कय +क)२
३ गय क
'
इस में
कगय
अगय (९) ( -क) ( -ग) ( -य) ( -क (क-ग) (क-य)
गय + -ग) (क-ग) (ग-य)-( -या (क-या (ग-य-का-ग.
- इस में
.
For Private and Personal Use Only
Page #228
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Read outreमीकरण ।
३११
घन
८५ । उद्दिष्ट समीकरण में केन्द्रगम और पक्षान्तरनयन करने से जो अन्त में अव्यक्त का एकघात बचे तो उस को समक्रिया का प्रकार पूर्व प्रक्रमों में दिखलाया । परंतु जो अन्त में अव्यक्त का वर्ग, इत्यादि धात बचे तो पक्षान्तरनयन से समीकरण के सब पदों को बांए पक्ष में कर देना तब अर्थात् दहिना पक्ष शून्य होगा। फिर बांए पक्ष के जो (४१) वे प्रक्रम से शीघ्र खण्ड हो सकें और उन में जो किसी खण्ड में अव्यक्त का एकघात रहे तो उस खण्ड को शून्य के समान करो । तब पूर्वोक्त समक्रिया से जो व्यक्त का मान पावेगा वही उद्विष्ट समीकरण में अव्यक्त का मान होगा ।
जो उन खण्डों में दो वा तीन इत्यादि अनेक खण्डों में व्यक्त का एकघात रहे तो हर एक खण्ड को शून्य के समान कर के अलग २ समक्रिया करो तो व्यक्त के जो दो वा तीन इत्यादि मान द्यावेंगे उतने उद्दिष्ट समीकरण में अव्यक्त के मान होंगे ।
इसकी उपपत्ति प्रति स्पष्ट है । क्यों कि जिस समीकरण का दहिना पक्ष शून्य है उस के आए पक्ष का जो कोइ खण्ड शून्य हो तो उस बांए पक्ष का मान भी शून्य होगा । यों दोनों पक्ष शून्य के समान एकरूप होंगे । इसलिये उस शून्य तुल्य खण्ड से जो अव्यक्त का मान आवेगा वही (८१) वे प्रक्रम के (५) वे प्रकरण के अनुसार उद्दिष्ट समीकरण में अव्यक्त का मान होगा ।
..
उदा० (१) ४ य२. ५ य = ३८ - ९, इस में य क्या है?
---
यहां पतान्तरनयन से,
५८२ - २८
य (५६ - २)
.. य = ० और ५ य उदा० (२) य२ = ९, इस में, पक्षान्तरनयन से, घर - ९ = ०
=0
०
.. य
•
य क्या
Acharya Shri Kailassagarsuri Gyanmandir
(य- ३) (य + ३) -
DER O
For Private and Personal Use Only
1
Page #229
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२१२ . एकवर्ष एकघासममीकरण ।
: य-३-० ओर :.५-३। पर भी य+३-० :.य=-३ ।
उदा० (३) य = य -२०, रस में य क्या है? पक्षान्तरनयन से, य-९५ + २० = • (४१) वे प्रक्रम से, (य-४) (य- ५) = • .. य-४- 0 और य = ४ धौर य-५-. :.य-५।
-य-8 उदा० (४) २-३ =२य-२, इस में य क्या है? छेदगम से, य- ४ = (२य. २) (य - २)
:: (य +२) (य-२) - (रय - २) (य-२) घा, (२य-२) (य-२)- (य + २) (य -२) . धा, (य--४) (- २) = • :: य-४ =•, य=४ और य-२०, य२।
उदा० (५) य-६ =य, इस में य क्या है? पत्तान्तरनयन से, य-य-६० वा,
य-८-य+२= . :: (य- २) (य+२ +४) - (य-२) -- . था, (य- २) (य+२+३) = .
य-२= और य२। उदा० (६) य+1 =२, इस मैं य क्या है? वेदगम से, य+१=२य. पक्षान्तर०, य-२+१= .
.. (य-१) (य - १) = 0 .. य--१- • और य-१ ॥
For Private and Personal Use Only
Page #230
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
छेदगम से,
at,
या,
उदा० (७)
C
है ?
ग्रहां, य
२य + १ = ०, य = --
उदा० (८) य... (
एक एकघात समीकरण ।
५८ - ये = ३८
५ (८२ - १ ) ३थ (य - १)
५ (य े - १) - ३य (य- १)
T
५ (य+१) (थ - १) - ३य (य - १)
(२य +१) (य- १ ) :
0
बा,
www.kobatirth.org
(घ२ + २ - क१) २
२.
(* +- कर २
(य + + क) (घ +
{(य+) - कर} {क
४ २
उदा० (९) य* -
(२ प्रय) - (7 * +-कर)
२ न ४ अ (२+१+ -- क े) (२ाय १-१ + क१)
४२
और थं - १००, घ - १
--
३, इस में य क्या है ?
यहां, (य + थे) (य-थे) -
बा,
यं - अ) (7-1) -
(य
(य-) (य- १)
(य
क) (थ
४ २
वा, (य + अ + क) (य-क) (य+क) (अ + क - य) : य + अ + क = ०, थ + - क ०, य अ + ० और अ + क
- इस में य का मान क्या
--- क, वा + क; वा - क; वा ा + क
●
Acharya Shri Kailassagarsuri Gyanmandir
-
-अ)}
=
२
- (अ + 1) (- 1).
थ,
+ क) ( + क
(अ + थे) (य - थे) - . -
०.
For Private and Personal Use Only
य)
२१३
0
इस में य क्या है ?
Page #231
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२१४
, एकवर्ण एकघातसमीकरण । वा, (य- अ) (य + १) (य -- १) = " :: य- .:. य = अ. य+१= ., .:. य = -१
और य-१-० :. य = १॥
अभ्यास के लिये और उदाहरण । (१) ५ -०य =३३ + १३ य, इस में य पोर १० । (२) य =८, बस में
य=२। (३) अय+गय = कय-घयर, इस में (४) (य-अ)- क = ०, इस में
य= +क। (५) २ ( य - अ)२= यर-अ, इस में य३ अ, और अ. (६) य+ य =२, इस में |
य (७) य = ४ (२य-३), इस में
र = २ और ६। (c) य (य+ ११) = ६ (य+१), इस में।
य=२।
(C) य -य-३ य + ७, इस में == -१ और ३! (१०) (य -२)३ = य३-८, इस में
य=२ और । (११) य = (य-३) (य-५), इस में य-३ और छ । (१२) इय-४= + ११, इस में य= ४ और २३॥ (१३) य-1-य-1-पत्य-१३, रस में य= • और ८ ।
। य-१ ५-य - २ य इस में य= • और ३३ । (१४) -य य -३- य-३, _य-४ य+६ य+9, इस में य= • और ।
य३- २४ य+७ य+८ १६
य-७य (५६) य- य-३' य- - (य-२) (य-३) (य-8) - इस में
य पौर
im PIRN
cluu
(१५)
+
For Private and Personal Use Only
Page #232
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(१०)
प्र
क) (
www.kobatirth.org
अनेकवर्ण एकघातसमीकरण ।
ग- १
ग) (क-ग) (य + ग)
क १
क) (क ग) (य+क) रस में
Acharya Shri Kailassagarsuri Gyanmandir
घर - १
+) (य+क) (य+ग)
८६ (१) जिन अनेकवर्ण समीकरणों में जितने समीकरण होते हैं वे प्रथम प्रकार के हैं ।
३ श्रनेकवर्ण एकघात समीकरण ।
| अनेकवर्ण समीकरण तीन प्रकार के होते हैं ।
,
२१५
य - २ और - १ ।
व्यक्त हों उतने हि
दून में अव्यक्तों के मान नियत रहते हैं अर्थात् एकघात समीकरणे में प्रत्येक अव्यक्तों का मान एक हि रहता है, वर्गसमीकरणों में दो इत्यादि ।
(२) जिन में अव्यक्तों से समीकरण न्यून हैं वे दूसरे प्रकार के हैं । दून में प्रत्येक अव्यक्त के मान अनन्त रहते हैं ।
For Private and Personal Use Only
(३) और जिन में अव्यक्तों से समीकरण अधिक हों वे तीसरे प्रकार के हैं ।
दन में समीकरण अशुद्ध होते हैं अथवा अशुद्ध न हों तो अधिक समीकरण व्यर्थ होते हैं ।
अब प्रथम प्रकार के समीकरणों की समक्रिया के लिये निर्दिष्ट अनेक समीकरणों से ऐसा एक हि समीकरण उत्पन्न करना चाहिये कि जिस में एक हि अव्यक्त रहे । यह समीकरण वक्ष्यमाण तीन ऐतियों में चाहा उस से उत्पन हो सकता है ।
(१) अनेक समीकरणों में जो एक हि अव्यक्त हो उस के उन्मितिश्रों का साम्य करने से प्रथम रीति बनती है।
1
(२) उत्थापन से दूसरी रीति बनती है ।
Page #233
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
अनेकवर्ण एजथातसमीकरण । (३) अनेक समीकरणों में ना एक हि अव्यक्त होगा उस के बारयो. सकों को समान करने से तीसरी रीति बनती है।
अनेकवर्ण एकघातसमीकरण की समक्रिया जिस में दो अव्यक्त हैं।
८७ । प्रथम रीति । प्रत्येक समीकरण से एक हि अव्यक्त की उमिति निकालो फिर उन दो उन्मितिओं को समान करने से एक समीकरण उत्पन्न होगा इस में दूसरा हि अध्यक्त रहेगा* । तब पूर्व समक्रिया से उस का मान तुरंत निकलेगा फिर उत्यापन से पहिले अव्यक्त का भी मान जात होगा । जैसा नीचे दिये हुए उदाहरणों में ।
(३+४= ३२ स उदा० (१)
य औरर का मान क्या है? १५-६५२८ यहां (१) और (२) ये दो विह क्रम से प्रथम और द्वितीय समीक. रण के मोतक मानो तब (८३) वे प्रक्रम से
(२) से,
ये-८६र ये दो य को उमिति हैं।
छेदगम से, १६०-२०१८४+१८१ पक्षान्तरनयन से, १२+२० र १६० -८४
वा, ३र७६ : २ पौर य =३२-8र इस में र के मान का उत्थापन करने से
Rom
वा, - २१६र - २१६४२-२-१२- ४१८ । . * रस की युक्ति (१८) वे प्रक्रम के (१) मी प्रत्यक्ष बात से स्पष्ट है।
For Private and Personal Use Only
Page #234
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
অনয যক্ষ্মঘানীয়। (१) से, र को उन्मितिर-३२-३य
N
MI
य
.
+
६
-
छेदगम से, ६-६य = १० य-५६
:: .१९ य = १५२ और य = १५३-८ तब उत्थापन से, र= ३२-३ य = ३२-२४ ==२
धा, -५य- २८ – ४०८.२८= =२ । इस प्रकार से यहां य= ८और र२
... ५ य+३य-२ = १६ उदा० (२)
। इस में य और र का ५य-२र ३य + १ = १३ मान क्या है? इस में छेदगम और यथासंभव सवर्णन करके (१) से, ३८य-२र = ११२ : य-२र+ ११२ (२) से, १६य-१० र ४७ : य-१०+४७
: र + ११२ – १० र +४७ । छेदगम से, र+ ११२-२०र + ६४
.. १८५=१८ और र =१ पूर्ववत् उत्थापन से, य=३ अथवा इस मेंर को उन्मितिओं को परस्पर समान करने से भी य और र के मान वे ही आवैगे।
१९
उदा० (३) स्य,-३० )
ए इस में य और र क्या हैं?
For Private and Personal Use Only
Page #235
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
३१७
अनेकवर्ण एकघातसमीकरण । (१) से यर -६य+हर
:: यर-६य ६र और य =ET रसी भांति (२) से
0
--- - -
५
वा, ६-३०-7 छेदगम इत्यादि कर्म करने से, र = १० : य = १५
- इस में य और र क्या हैं? (१) से, य=ग कर
अथ+कर=ग
उदा. (४)
चय+कर-ज
44 + +
कर_ज-छर छेदगम से, गच-कचर = अज-- अकर : (अछ-कच) र = अज- गच, :. र=
_अछज-कचज अछज-गचछ
कच) च (अछ-कच _गचछ-कचज गछ-कज
च (अछ-कचा अछ-कच इसी भांति य के दूसरी उमिति में भी र के मान का उत्थापन करने से य का वही मान मिलेगा।
. अभ्यास के लिये और उदाहरण ।
२ य+३र = १२ ) ३ य+gr= १७ ।
र २' ४य-५२-३५ ।
य१० ३य+ र
+
..
For Private and Personal Use Only
Page #236
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(8)
(५)
(६)
(c)
(c)
(C)
(१०)
(११)
३ य = ३५
२२=७य -
४५
य + =
३ य
उदा० (१)
५ य
४
घर
य: २८. ५
३
य
- १
य
T
--
पर + ४० =
+
अनेक एकघात समीकरण ।
}
कय
घर
य+र
+२= १३
य - ३
= G
१७- २८.
५र
३ र ·
३ 2
+ =3 य र
=8
अथ + कर
कय + अर
गर
www.kobatirth.org
य र+8
गय-कर =
. = २, और ये
+
-- 06 =
(य + २) (र + ३) |
(य +३) (र- २)
इस में
=4
२ प्रक
और
इस में
१
+ कर
३६+४₹ = • ३२) ५६ - ६र= ३८ )
इस में
१२य - १ १३
य
२=२
र
१
Acharya Shri Kailassagarsuri Gyanmandir
- इस में
र =२
| य = ८
इस में =५ । (
र=५
G=
=8
य ==
इस में १२
1
र = ४
इस में य = ३ और र = ६ |
[ य = अ
क
ग.
क
(अ +कर + गरे) (गर - करे )
कग
For Private and Personal Use Only
य
३ ई, इसमें यू = 58
1
।
य =
२१९
- इस में य और र क्या हैं
=
८८ | दूसरी रीति । निर्दिष्ट समीकरणों में जिस व्यक्त की उन्मिति थोड़े आवास में मिल सके उस की निकाल के उस का उस के दूसरे समीकरण में उत्थापन करो इस से ऐसा एक समीकरण उत्पन होगा कि जिस में एक हि अव्यक्त हो तब पूर्व समक्रिया से दोनों अव्यक्तों के मान शीघ्र जात होंगे ।
अ + ग
अ +
ग
Page #237
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
उदा० (२)
अनेक
एकघात समीकरण ।
यहां (१) से थ की उन्मिति य = ३२ =४ र इस से (२) में
४र
उत्थापन करने से, ५{३२ } - ६र = २८
तब पूर्वोक्त रीति से, र = २ और उत्थापन से य=८।
. य
५ य +
उदा० (३)
१०+४७ पह
(१) से य
३ य श्र
५८ - २१- ३८
यर य+र
यर र
www.kobatirth.org
यहां छेदगम और यथासंभव सवर्णन करके
(१) से, ३८य - २र = ११२, (२) से १९ य
--
=
६
-
=== ३०
तब पूर्व रीति से, र = १ और उत्थापन से, य
-६
= १६
{
३+१६
६ र
र -६
इस सर्वात किये हुए (१) ले में उत्थापन करने से ३८ { १०८१+४२} – २ ८ = ११२ -
=
१
× र
- र
१ का मान क्या है ?
३०
इस में थ और र इन
६ र
र दे इस का (२) में उत्थापन करने से
-
६र
Acharya Shri Kailassagarsuri Gyanmandir
इस में य और र क्या है ?
...
604
१०₹ ४७
=
६ र २
६ र – r° + ६ र
सवर्णन से, : ६र = ३६० - ३०र : अथवा यहां (१) से पर (२) से घर = ३० य - ३० र ...
य = १५ ।
(३)
(8)
.. ३० य - ३०१ = ६य +६ : २४ य = ३६ र य = इस से (३) में उत्थापन करने से, ई = र + ईर
For Private and Personal Use Only
६र
१२- र
₹ = १० और उत्थापन से ६य +६६
...
३ ।
३०
....
Page #238
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२२१
অলঙ্ক ঘানমীক্ষায়। वा, ३र३० ::र- १० और य= १५ । अय+करग
है इस में य और र क्या है? ) ...
उदा० (8) चय+कर-ज)
गक-रा अछ-कच
(१) से, य=गका (२) में उत्थापन से, चxग-कर+छर =न पृथक्करण मे, र= अज-गच तब य F ग्रछ-कच
दस में अ, क, ग, च, छ और ज ये व्यक्त हैं । अब इन में जो प्रत्येक अ, क और च =१ और छ == --१ मानो तो उत्थापन से,य=
गछ-कज _-ग - =-पं प
= ग+इज और र= अज - गच्च = ज-ग - गज =ग-ज और जो छ = अ, चक और जग मानो तो निर्दिष्ट समो.
कर = ग. सभांति के होंगे।
का
-ग -कन
॥
करया
कय+रग।
और
य= गछ-कज = अग-का=ग
ऋछ-कब
अ+
क
र-अछ-कच
% 3D
अ-कर
न
+
क
: इस में य-र-म ।
और इस में जो अ=-क मानो तो य-र= == » इस प्रकार से य और र ये दोनो अनन्त होंगे। इसी भांति उत्थापन से य, र के मान अनेक प्रकार के निकलेंगे ।
अभ्यास के लिये और उदाहरण ।
य+३ र
र
१५)
(१) २य-र-२
रस में
=३ और र-४।
For Private and Personal Use Only
Page #239
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
अनेकवर्ण एकघातसमीकरण ।। २य=१७-३२)
र यह इस में (३) +१r=, और य+3 र८इस में
(य१ नर-५ {५=१३ । fय= ४१
+
(५) य + १ = १ और 4-यहां य =३ और र=८ ।
य-२२+१९-२य-४ +२९ ) इय-र+
5 ६य-३+५ । य+५+३ _ स्य-र+१३ ३य+१३+३ ६२-३र+३२)
इस में
। तीसरी रीति । पहिले पत्येक समीकरण में छेदगम, इत्यादि कर्म करके यथासंभव सवर्णन करो । तब दोनों समीकरण के एक ही अव्यक्त के दो वारयोतकों से परस्पर के समीकरण गुण देनो अथवा संभव हो तो अपवर्तित वारदोतकों से परस्पर के समीकरण गुण देओ। तब उन दोनों समीकरणों में उस अव्यक्त के वारद्योतक समान होंगे। फिर उन वारद्योतकों के चिहू जो सजातीय हों तो उन गुणे हुए समीकरणों का अन्तर करो और जो विजातीय हों तो योग करो। इस से एक समीकरण ऐसा उत्पत्र होगा कि जिस में एक ही अव्यक्त होवे तब उक्त विधि से दोनों अध्यक्तों के मान शीघ्र ज्ञात होंगे।
उदा० (१) ३ य+४र३३)
५-६र६८६ इस
- इस में य और र क्या हैं? यहां य के वारयातकों से परस्पर के समीकरणों को गुण देने से, १५ य + २० र १६०) .
यहां समान वारद्योतकों के चिह्न मजा१५ य -१८र =८४ तीय हैं : अन्तर करने से, ३८र= ७६ .. र=२
दूस से (१) उत्थापन करने से, ३ य+c= ३२, ३ य = २४::: य=८| इस प्रकार से इस में य=८ और र= २।
For Private and Personal Use Only
Page #240
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
अनेक
एकघात समीकरणं ।
अथवार के वारयोतक ४, ६ दो से अपवर्तित करके २, परस्पर के समीकरणों को गुण देने से,
तीय हैं .:. उत्थापन से, र = २|
उदा० (२)
९ य + १२८ = ९६ यहां समान वारयोतकों के चिह्न विजा
१०८ - १२र = ५६
मान क्या है ?
समीकरणों का योग करने से, १९८ = १५२ :.
www.kobatirth.org
उदा० (३)
५ ८ + ३८-२ = १६
५८२ र
..
(१) से, (२) से, स्पर के समीकरणों को गुण देने से,
अन्तर करने से,
इस में छेदगम और यथासंभव सवर्णन करके
३८ - १६ = १
-
३८य - २र = ११२
१९८ - १०र = ४०
घर य+र
घर
= ६
अन्तर करने से,
Acharya Shri Kailassagarsuri Gyanmandir
३८- २ = ११२
३८य - २०र = ९४
१०₹ = १८
र = १ और उत्थापन से य ३ ।
?
= 30
(र - ६) य = ६र
(३० – र) य = ३० र
-
इस में य और र क्या है ?
य
यहां (१) से (२) से, गुणदेने से, (३० - र) (र- ६ ) य = ६र (३० - र)
(३० - र) (र - ६) य = ३०र (र-६)
० = ६र (३० - ₹) – ३०र (₹ - ६)
इस में य और र का
इस में य के वारद्योतक ३८, १९ अपवर्तित करके २, १ दून से पर
|
२२६
इस से
य = ८
For Private and Personal Use Only
इस में य के वारयातकों से परस्पर के समीकरणों को
३०र (र -६) = ६ र (३० - २), वा ५ (१-६) = ३० १ ₹ = १० और उत्थापन से य = १५ ।
समक्रिया से
Page #241
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२२४
अनेकवर्ण एकघालसमीकरण ..अथवा रस भांति के समीकरण को समप्रिया करने की एक सुलभ रोति है सो ऐसी। प्रथम समीकरण के दोनों पक्षों के अंश और छेद को पलट देने से,
यमर, धा, १ +2रसी भांति दूसरे से, 1-2 -३. (३) और (४) दन का योग और अन्तर करने से,
::
र
१०
और य = १५ ।
४ +३७ उदा० (४) ४य = ४२+१ और र+२=
४ (र+) इस में य और र दन का मान क्या है? (१) से, ४ = ४२° + १ (२) से, ४५ = ४२+१२९-२९
: अन्तर करने से ० =-१२२+३०, वा, पर-३० :: र-२३ और उत्थापन से य =६३ ।
चाय+कर-ग उदा० (५)
- २) -
इस में य और र क्या हैं? चय+छर =ज इस में य के वारद्योतक अऔर च इन से परस्पर के समीकरणों को गुगा देने से, अचय + कचर = गच
ग्रार अचय + अकर = अज :: अन्तर करने से (कच - अछ) र गच- अज
...गच-अज अज -गच :. र-कच- छ अछ-क' .
कज-ग और उत्यापन से, य-ज- गड- च ।
काच
गत-कज
For Private and Personal Use Only
Page #242
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(१)
(२)
(४)
(५)
३ य + ४₹ = ३८
=======
(३) यू+ 8 =० +8 =3
३८-५१-४६
२२=६ - ८३
५ य +
३८
1
३ या य+२₹
अ
(६) क+र
५
य -
=
अनेक
एशधातसमीकरण |
अभ्यास के लिये और उदाहरण ।
+ क य
क
थ =
www
=
+
८३
www.kobatirth.org
इस में य६ और १=५ ।
- क
र
अ + क
इस में य = १३. और र
- ६-३ इस में १२ और १५ ॥
=
य र =
1
क और अथ+ कर = ग इस में अ+य
+2
२ अ
३२
३ और ४८ - ३ २. इस में य = २, र = १ ।
य -
इस में य =
=8
=>
Acharya Shri Kailassagarsuri Gyanmandir
और र =
इस
१६ और र ११ ।
1 १७.
य
र =
अरे – क + ग
-
२क
For Private and Personal Use Only
अ + करे
३ अ + क २ + कर
वक्र - प्र.
1
我
1.
८9,
और। इन तीनो प्रक्रमों में जिन उदाहरणों का मक्रिया से गणित करके दिखलाया है वे तीनों रोतिनों में समान हि लिखे हैं । इस का कारण यह है कि किस उदाहरण की समक्रिया किस रीति से शीघ्र बनली है यह सीखनेहारा देखे और अपनी बुद्धि से. बिचारे तब और उस जाति के उदाहरणों में उसी रीति को लगावे 1.
८० । किसी किसी स्थल में एक समीकरण के दो पक्षों का दूसरे समीकरण के दोनो पक्षों में भाग देने से एक समीकरण ऐसा उत्पन्न: होता है कि जिस से अव्यक्तों का मान थोड़ी क्रिया से निकलता है।
१६
Page #243
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
२२६
अनेकवर्ण एकघात समीकरण ।
- T
= २१
(१)
जैसा
य + र = 9
(२)
इस में (१) के दोनों पक्षों में (२) के दोनों पक्षों का भाग देने से
य
(9)
घ- र= ३
(३)
सब (२) और (३) इन से य = ५ और र= २ ।
और ऊपर की रीतियों के तीसरे उदाहरण में (१) से
(र- ६) य = ६१
(२) से
(३० - र) य = ३० र
(३) के दोनों पत्तों में (४) के पत्तों का भाग देने से
(र-६) य र) य
र-६
१
(३०-०८ - ३०२ वा ३ --! ३०
(३)
तब समक्रिया से, र = १०, और उत्थपन से य =
(8)
य + र = २४
इस भांति अनेक लाघव के प्रकार हैं वे समक्रिया के प्रति प्रभ्यास से आप से आप मन में प्रकट होते हैं ।
अभ्यास के लिये और उदाहरण ।
य - २१=३
www.kobatirth.org
}
... ... ...
य +१२र = ६७ ]
३८ + र = २६
Acharya Shri Kailassagarsuri Gyanmandir
४८-७१=३० ) श्य - cx= ४ [
इस में य = १७ और T=७ ।
१५ ।
१५ य +२०₹ = २४७ १८- ३५१-२२
इस में य= ७ और १=५ ।
- इस में घ ११ ।र र = २ ।
}
- इस में य = रोर र = ४ ।
For Private and Personal Use Only
(४)
Page #244
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
अनेकवर्ण एकघातसमीकरण ।
GANA
- इस में य = ३५ और र= ५६ ।
Fola wala
३१ + १ = ५) इस में य = ३६ और र
२यर-२८, इस में य = ३६
॥
+
३
इस में य = १९२३३ और र = १६ गई ।
८५+५=१३८८
में य = १६ और र= २४ ।
६र+३य = १५०
+
--
+
इस में य= ८और र=
ए.+३ य - १९ = १०१ ३य- + 8१२= १३म
य = १३ और र= १० ।
प्रय+
८य-३ . ५य+८र
य-३र +५यर = १७ एस में य = १२
+
१७
१२.
(११) य
स्य
+
५
य+४र
५य+
१५
81
५१ य+७९-८य - १३२ =७६ र १३य - ३ र + ७ य+er = ५८+ ३ य +१७२) 'दूस में य = ७५ और र = १५ । य-१७ - ४१. = १५ - ५ य
य १२ र-१५ + ३ (२य + ३) = ५०-७र + १९
य
--१
.
S
- ४.
पर
.
.
(१३)
इसमें
For Private and Personal Use Only
Page #245
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
अनेकवर्ण एकासमीकरण ।
___५य-र+४ - ५ य-१३ र + ३२ =२)
५य-
T
+
8..
-१३र+३
22
य
.
9
य
-१३
+
१
+ २ १२
(१४) ७ य+र-४ - १५ य-१२र+१=१, इसमर-५' ., २५-२६-५ यर =er+१३+१९५८६र । ७य+५-३२-५= ८य१३ र ११ य + ५२४७०)
य-४८७२ और र= ४२० ।
LIO
(१५)
___ +
४य
७
+
+३ १
3/
USA
H
इस में
16 और र
४र+५
m
६
+८-५ य+४
|
५य+र-
६ ८य-१३+२ --05----४+ QY
य= १. और र
इस में
+7= ११
दसमें -५ और प-३ ।
ये--
।
व्य-दर ३८ इस में य= २ और र=१
य
मैं
५ यर Du+६
N+
इस में य= २१ और र=।
ANI
For Private and Personal Use Only
Page #246
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
(३१)
(PR)
(*3)
(२४)
(२५)
अनेक एकघाससमीकर
(श्य + ३) (३+४) = ६८ + (य +2)
५०-०८
१४
इस मैं
घर + ५थ = ४₹- ७+
थ+२₹ = १४
--
४य +9 १०
329
इस में
इस में
+
५८-२श
१४
+ पर = र + ३१ + १०
थ - रं = १
५. थ
११ य
३(० य +५)
www.kobatirth.org
--
२य - र
७ य
+
m
1
र
S
- १
इस में
३८+५+१ ७य-३र
+
६र -५ १४
Acharya Shri Kailassagarsuri Gyanmandir
} इस में य
(6)
य = ७ और रं = ३।
1
४ ३र १२य-पूर
- इस में य = ६ और ₹ =५ ।
६ य +१३ १५
= ८ और १ - ३ |
३. य
For Private and Personal Use Only
घ - ७ और रा
'
+ १४ ૧૪
य = १ और २ = ३२|
P कव एकघात समीकरण की समक्रिया
जिस में तीन आदि अव्यक्त हैं ।
८१ । जो तीन अव्यक्त हों तो उनका मान ठहराने के लिये तीन समीकरण चाहिये तब उस में उक्त विधि से दो समीकरणों से एक श्राव्यक्त को ' उड़ा के एक समीकरणा उत्पन्न करो ऐसा हि इन दो समीकरणों में से एक और एक जो शेष बचा है इन दो समीकरणों से उसी अव्यक्त को उड़ा के एक दूसरा समीकरण उत्पन्न करो इस प्रकार से दो समीकरण उत्पन्न होंगे जिन में दो अव्यक्त होंगे तब उन का मान पूर्वोक्त विधि से निकालो फिर उत्थापन से तीसरे अव्यक्त का भी मान जान लेओ ।
Page #247
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
অন্য যক্ষদানীজযে। .. अथवा तीन समीकरणों में कोई दो समीकरणों से जो हो सके तो दो अव्यक्तों की उन्मिति ऐसी निकालो कि जिनमें अवशिष्ट एक हि अध्यक्त रहे । तब उन उमितियों का अवशिष्ट समीकरण में उत्थापन करने से गक समीकरण ऐसा उत्पन होगा कि जिस में एकही अव्यक्त होगा तब समक्रिया से उस अध्यक्त का मान जान के उत्थापन से और दो अव्यक्तों के भी मान जान लेना।
जो चार अव्यक्त हों तो उन के मान चार अध्यक्तों से ज्ञात होंगे। उस का प्रकार यह है। निर्दिष्ट चार समीकरणों से पर्वात रीति करके तीन समीकरण उत्पन्न करो ऐसे कि जिन में तीन ही अव्यक्त होवे। तब उन तीन अव्यक्तों के मान ऊपर के विधि से ज्ञात होंगे फिर उत्थापन से चौथे का भी मान ज्ञात होगा।
इसी भांति निन पांच आदि समीकरणों में उतनेहि अव्यक्त होंगे उन की भी सक्रिया जानो।
उदा० (१) य+र+ल१३, २ य-३र+8 ल = • और ३ य +४२-५ल = २९ इस में य, र और ल दून के मान क्या हैं?
यहां (१) से य = १३ - र - ल, (२) से य = ३र--४ल
:: ६-२२-२ल =३र-४ ल, वा, ५र-२ल = २६ ।
अथवा, (१) से य = १३ -र-ल इस उमिति का (२) में उत्थापन करने से, २(१३-र-ल)-३र + ४ ल = 0
:. २६-१२-२ल-३र+४ ल=०, वा, ५र-रल=२६ । को ऊपर उत्पत्र हुआ था सोहि समीकरण उत्पन्न हुआ।
For Private and Personal Use Only
Page #248
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
अनेकवर्ण एकघातसमीकरण अथवा तीसरी रीति से, (३) को २ से गुण में
स्य+२ र + २ल = २६ (२)
२य-३+४ल = . .. अन्तर से, ५र-२ल = २६, यह वही समीकरण है जो पहिले दो बार उत्पन्न हुआ है।
इसी भांति (२) और (३) इन से य को उहा के यह समीकरण उत्पन्न होता है, १७ र-२२ ल =५८)
और ऊपर का उत्पन्न समीकरण ५२-२.ल = २६.) इन दोनों में उक्त विधि कर के सक्रिया से,
र६और ल = २ फिर उत्थापन से य =५
অথয়া
य= १३-र-ल (३) का (२) में उत्थापन कर के सर्णित करने से
५२-२ल = २६ : ररेल २६ (8) (४) का (३) में उत्थापन करने से य = १३ - २ल २६ -ल
= ६५-२ल - २६ - ५ ल = ३९-७ल (५) .:. (४) और (५) इन मितिओं से (३) में उत्थापन करने से
३ (३-ल)+४ (२ल. २८)-५ल - २ वा, ११७-२१ ल+ +१०४-२५ ल = १४५
: ३८ल = ७६ और ल =२ फिर य = ३-७ल = ३९ - १४ = २५ - ५, पौर र = २ल +२६ = ४+६३० -६ ।
For Private and Personal Use Only
Page #249
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
unar एकधा समीकरण ।
इस भांति इस उदाहरण में य = ५५ = ६ औरत-२
www.kobatirth.org
उदा० (२) य +२१ - ३ ल = १०, ४ य + र • २९ और ०१ - ५ल = १६ इस में यर और लदून का अलग मान क्या है ?.
यहां (३) रे से र= ५ ल+१६, ओर (२) रे से य==
तबर के स्थान में उस की उन्मिति को रखने से
६०९
५ ल - - १६ ५९३ ५ ल ८४ ८४
(१) से
Acharya Shri Kailassagarsuri Gyanmandir
..
+२
इस में
अब य और र दून की उन्मितियों का (१) में उत्थापन करने से
५२३ - ५ल ८४
(५ ल+-१६)
छेदगम से, ५९३ - ५ल + १२० ल + ३८४ - २५२ ल
पक्षान्तरनघन से, ९३७ ल = १३०
.. ल = १
उत्थापन से य= ० और
इस प्रकार से
उदा० (३) य + र = १७, य + ल = १२ और + ल = इस में थर और ल इन के मान क्या हैं?
३ल = १०
५ ल + १६
८७
८ = ७,र = ३ और ल - १ |
For Private and Personal Use Only
य = १०-८, (२) से य = १२-ल,
१७- १=१२ - ल और ल= र-५,
ल की उन्मिति का (३) र में उत्थापन करने से र+र- ५=९,
१२
८४०.
の
२४ = १४ और र=० तब उत्थापन से य = १० और ल २।
Page #250
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
अनेकवर्ण एकघात समीकरण
矧運
अथवा इस भांति के उदाहरण में पहिले तीनों समीकरणों का योग कर के उस में २ का अपवर्त करो तब उस में एक एक समीकरण घटादेने से तीनों अव्यक्तों के मान तुरंत ज्ञात होंगे ।
जैसा । यहां (१), (२), और (३) इन का योग करने से.
२+२१+२ ल = ३८
२ का भाग देने से, य+र+ल
पह
इस को तीन स्थानों में रख के क्रम से तीनों समीकरणों को घटा देने से,
य + र + ल = १८, य + र + ल = १८, य + र + ल
य+र
और
q
= १२, य
=
(१) से
(२) से
at,
घटा देने से, =
रे हे १५
=
१
१
Velom
१
+ T
य + थर
.१
उदा० (४)
५५
इस में यर और ल इन का मान क्या है ?
--
१
www.kobatirth.org
यहां तीनों समीकरणों का योग करने से,
+ T +
बाये+रे+लेले एस में प्रत्येक समीकरण को
०
+ ल - १२,
१ १ १०, यें +
४५
१६
61
- २, वा,
१०
10 = 2 = 240
९०
-
=
घर १
=
उदा० (५) घ+र पल य + ल यर और ल इन का मान क्या है
?
४५
१ पद
+
१
11/144 +
१
Τ
q
य = १०
.र =
. य =
-
Acharya Shri Kailassagarsuri Gyanmandir
(+
और है +
1
For Private and Personal Use Only
.. ल ८०
१८ ।
= १९
= २२ -2
रल और र+व
=
,
q
४
" इस में
Page #251
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२३४ अनेकवर्ण एकघातसमीकरणं । (३) से .. .++=".. तब चौथे उदाहरण के ऐसी समक्रया करने से __य = २, र-३ और ल=३
अभ्यास के लिये और उदाहरण । (१) य+३+४ ल=२५,३ य+ र+५ल = ३४ पौर ४ य+ ५र + ७ ल = ४५, इस में य = ४, र =३ और ल -२
(२) य+२र-४ ल = 9, २ य+र+९ ल =५० और ३य -५र + ल =५, इस में य = ६, र = ५ और ल =३ । ___ (३) य+ र+ईल = २००, य+ र+ ल = १५९ और य+ र+१ल = १४४, इस में य = १११, र= १०८ और ल = १०५ । (४) य+र+ ल = २०,३ य+र= २३ और ५र-२ ल = २६ इस में
- - य=५, र ८और ल७ । (५) य+ र ८, य+ ल = ५० और र+ल = १२
- य = ३, र ५ और ल =७ । (६) १ य+11६, ३. य+ल = ५ और १+१=३ इस में
य=८र६और ल=४ । - (७) ५+३+ - ३. ये +
1
और थे-है+ने = १, इस में य= २, र = ३ और ल-६ । (८) +7 -, + - और ३ + = है. दूस में
य= ६०, र= ६० और ल = १८० । (1) य+र
र= १५, चल = २४ और तरल = ४० .
, य+ल इस में
य= २४, र=४० और ल ।
मा.
For Private and Personal Use Only
Page #252
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
नार-३
+३
एकघातसमीकरणसम्बन्धि प्रश्न ।
२२५ (१०) य-र+ ल = १, (+क) य-(अ+ग) + (क+ग) ल -२ और अकय- अगर+कगल = ३, इस में
गर-२+३ कर-२क+३ . य= (अ-ग) (क-ग),र (अ-क (क-गारल- (अ-क) (अ-गा।
(११) य-अर+अल अय-कर+करलक और य- गर + गलग, इस में य = अकग, र= अक+अग+कग
और ल=अ+क+ग। . (१२) या- अ ययन 2 और एलन - " इस में य- के-गर-अ+-+ और ल-क+ग-अ . ___ (१३) 2 + 2 - 2 + - * और १ + -1, इस में य= अगर
२ अकग 4-अग+कग-कार-अक+कग-ऋग, प्रार
ल-अक+अग-कग । (१४) य+र+ल=६,य+र+व=६,य+ल+व= और र+ल+३=५, इस में य =२, र =३, ल = ४ और व १ ।
२३का
अकग
बीजगणितसंबन्धि प्रश्न जिन से एकघात
समीकरण उत्पन्न होते हैं।
१२। जिस प्रश्न का उत्तर जानना हो उस का सब अर्थ पहिले अच्छी भांति मन में ले आओ और तब ऐसा सोचो कि इस में जो अव्यक्त अर्थात् अज्ञात संख्या है वह जो ज्ञात हो तो किस प्रकार से उस संख्या की प्रतीति करेंगे? अर्थात् यह संख्या उस अव्यक्त राशि का मान ठीक है वा नहीं यह किस प्रकार से जानेंगे? तब जिस प्रश्न का प्रतीति देखने का प्रकार अच्छी भांति मन में प्राधेगा उस प्रश्न का उत्तर बीजगणित से ज्ञात होगा । सो इस प्रकार से।
For Private and Personal Use Only
Page #253
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकधातसमीकरणसम्बन्धि प्रश्न ।
प्रश्न में जो अव्यक्त राशि होगा उस का मान य मानो और उसी को अव्यक्त राशि की ज्ञात संख्या समझ के उस की प्रतीति करने के प्रकार से उस संख्या में प्रश्न की बोली के अनुसार सब गणित करो तो अन्त में ऐसे दो पक्ष ठहरेंगे कि जिन में परस्पर कोइ नियत संबन्ध हो । जो उन में परस्पर समत्व संबन्ध हो अर्थात् उन दोनों पक्षों के मान परस्पर समान हों तो उन को = इस चिह्न की दोनों ओर में लिख देने से एक समीकरण उत्पन्न होगा । और जो उन दो पक्षों में कोई और संबन्ध हो तो उन में किसी एक पक्ष में ऐसा संस्कार करो कि जिस से दोनों पक्षों के मान तुल्य होवें । तब उन से उक्त.. प्रकार से एक समीकरण होगा । उस की समक्रिया से य का मानं ज्ञात होगा वही प्रश्न के अव्यक्त राशि का मान होगा उस से प्रश्न का उत्तर सब स्पष्ट होगा ।
जो प्रश्न में अनेक अव्यक्त राशि हो तो उन के मान अलग २ य, र, ल
इत्यादि मान के उन से उक्त प्रकार के अनुसार अलग २ दो २ समान पक्ष सिद्ध करो तो जितने अव्यक्त राणि रोगे उसने धोकामा जन्न होंगे। तब अनेक समीकरण की समाक्रया स य, र, ल इत्यादि अव्यक्तां के मान ज्ञात होंगे उन से प्रश्न का उत्तर स्पष्ट होगा !
अथवा जब प्रश्न में अनेक अव्यक्त राशि हैं तब उन में जो एक श्रव्यक्त का मान ज्ञात होने से और सब अव्यक्तों के मान ज्ञात होते. हों तो कभी २ यों करते हैं कि उसी अव्यक्त को मान य मान के उस से और अव्यक्तों के मान ठहरा के दो पक्ष सिद्ध करते हैं उन से एक हि समीकरण उत्पन होता है । तब समक्रिया से य का मान जान के उत्थापन से और अव्यक्तों के मान जान लेते हैं। यह सब क्रिया आगे जो उदाहरण लिखेंगे उन से स्पष्ट होगी ।
प्रश्न १ । जिस संख्या को दूनी कर के उस में उसी संख्या का आधा जोड़ दोओ तो योग १५ होता है वह संख्या क्या है ?
For Private and Personal Use Only
Page #254
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणासम्बन्धि प्रश्न । यहां य = अध्यात संख्या, तब प्रश्न की बोली में '२ य+ य, और १५ ये दोनों पक्ष परस्पर तुल्य हैं। -:. २य+ = १५ यह समीकरण होता है । तब छेवगम से, ४ ,य + य =३०, वा, ५ य = ३०,
:. य =६ यह संख्या । यही उत्तर है। क्योंकि २४६+६ = १२ +३ = १५ ।
प्रश्न २ । जिस संख्या को तिगुनी कर के उस में १७ घटा देओ तो शेष में उस संख्या से ५ अधिक रहता है वह संख्या क्या है?
यहां य = अध्यक्त संख्या, तो प्रश्न की बोली के अनुसार ३ य - १७ और य+५ ये दो पक्ष सिद्ध होते हैं। और ये दोनो परस्पर समान हैं।
.. ३ य-१७ = य + ५, तब प्रतान्तरनयन से २ य =२२ :: य = ११ अर्थात् वह संख्या ११ है। यह उत्तर।।
प्रश्न ३। स इस संख्या के ऐसे दो भाग करो कि पहिले का चतुर्थीश और दूसरे का पञ्चमांश मिलके ५ हो तो वे भाग कौन
यहां य= पहिला भाग, और र= दूसरा भाग तब प्रश्न की बोली से, य+र = २१ और य +1र५
य = २१ -र इस उमिति का (२) में उत्थापन करने से, १ (२१-) +9र५, छेदगम से,
१०५-५+8र = १०० . र= ५, यह दूसरा भाग है और य = २१ र २१-५- १६ बह पहिला भाग है।
For Private and Personal Use Only
Page #255
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणसम्बन्धि प्रश्न । अथवा यहां एक भाग को जानने से दसरा भाग तरंत जान सकते हैं इस लिये यहां जो य = पहिला भाग मानो तो स्पष्ट है कि २१ - य = दूसरा भाग होगा : प्रश्न की बोली से, यू +२५ य = ५, छेदगम से, य+ ८४ - ४ य = १००
.. य = १६ यह पहिला भाग है, और दुसरा भाग =२१- य =२१-१६ =५। इस प्रकार से यहां २१ इस संख्या के १६ और ५ ये दो भाग हैं। यह उत्तर । ।
प्रश्न ४ । द्रो नगरों में १४० कोसों का बीच था उन दो नगरों से अौर क ये दो मनुष्य परस्पर मिलने के लिये एक हि काल में चले; उस में अ मनुष्य प्रति दिन ११ कोस चलता था और क र कोस च. लता था। तब नगर से चलने के पीछे कितने दिन पर उन दोनों की मार्ग में भेट हई? ___ यहां मानों कि चलने के पीछे य दिन पर उन की मार्ग में भेंट हई, तब ११ य = अ के चलने के को कोस र य = क के चलने के कोस ।
.:. ११य+ य = १४०,
• वा २० य = १४० और य =७। अपने २ गांव से चलने के पीछे दिन पर और क इन की पर. स्पर भेट हुई । यह उत्तर ।
प्रश्न ५। अ, क, ग इन तीन मनुष्यों को साझे के व्यापार में एकटे ५४० रुपये मिले, उस में अ, से क, के १५३ रूपये अधिक. थे और क, से ग के १२६ रूपये न्यन थे तो उस में हर एक के कितने २ रुपये थे?
यहां य= अ, के रूपये, र=क, के रुपये और ल = ग, के रुपये। तो प्रश्न की बोली से, य+र+ल = ५४०, य =र- १५३ और रल+१२६ ये तीन समीकरण होते हैं। तब
For Private and Personal Use Only
Page #256
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणसम्बन्धि प्रश्न । (३) रे मेंर को उन्मिति से (२) रे में उत्थापन करने से
य=ल + १२६ - १५३ = ल-२७, अब य और र दन के उमितिओं से (१) में उत्थापन करने से
ल-२७+ ल+१२६ + ल = ५४०, :: ३ ल = ४४१ और ल = १४७ यह ग, का द्रव्य है ।
तब उत्थापन से, य = १२० यह अ, का धन, और र=२७३ यह क, का धन है।
अथवा
मानो कि य = अ, का धन तो य+ १५३ = क, का धन और य+ १५३ -- १२६ = य + २४ = ग का धन,
:: य+य+ १५३+ य+२७ = ५४०, वा, य= ३६० : य= १२० यह अ, का धन है। तब उत्थापन से, य + १५३ -- १२० + १५३ = २७३ यह कका धन
और य+२७ = १४७ यह ग, का धन है। यह उत्तर ।
प्रश्न ६ । जिस भित्र संख्या के अंश में २ जोड़ देने से उस का मान ३ और छेद में ३ मिला देने से उस का मान होता है वह भिन्न संख्या क्या है ?
यहां मानो कि य = अव्यक्त भित्र संख्या का अंश और र- छेद है तो य = अध्यक्त भित्र संख्या होगी। .:. प्रश्न की बोली से, य+ २ = ३ और 4 - ।
(१) से, र= २य + , और (२) से र=३ य -३ ":. २+४=३य-३, :. य = ७ यह अंश है और उत्थापन से र -२य + ४ = १८ यह छेद है : यह अभीष्ट भित्र संख्या है। यह उत्तर।
For Private and Personal Use Only
Page #257
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
तो
२४०
एकघात समीकरणसम्बन्धि प्रश्न ।
प्रश्न ७ | दोश्रों की एक संख्या है उस में जो उन दो श्रङ्कों के योग का भाग देखो तो भजन फल आता है और जो उस संख्या में १८ घटा देखो तो शेष में उन्हीं अङ्कों की स्थिति पलट के रहती है वह संख्या कौन है ?
मानो.
t=
www.kobatirth.org
और
एक स्थानीय
य - उस संख्या का दशस्थानीय अङ्क
-
Acharya Shri Kailassagarsuri Gyanmandir
अङ्क
१० य + र = संख्या
१० य+र = 0 और सवर्णन से, य = २६, य+र
१० य +
१८ = १०१+ य
ल्य = हर + १८, बा, य= र + २
.. ₹ = २ और य = ४ : ४२ यह संख्या है ।
यह उत्तर |
प्रश्न ८ । और क दो मित्र थे उन में अ ने क, से कहा कि जो तुम हम को १६ रुपये देओ तो हमारे पास तुम से तिगुने रुपये हो जाएंगे, तब क, ने अ, से कहा कि जो तुम हम को १० रुपये दे तो हमारे पास तुमसे चौगुने रुपये होंगे। तब ा और क इन के पास कितने २ रुपये थे से कहो ।
यहां य अ, के रुपये, और र = क के रुपये तब प्रश्न की बोली से, य + १६ = ३ (र - १६) और ४ ( थे - १७) = र + १
: समक्रिया से, य = २८ और र= = ३१॥ .:., के पास २९ रुपये थे और क, के पास ३१ थे
यह उत्तर ।
इस में १६ और १७ ये क्रम से अ और क इन के दान कहलावें और ३ र ४ ये गुण कहलावें ।
अब जो अ, का दान प और गुण फ और क, का दान ब और गुण भ हो तो प्रश्न की बोली से इस भांति के दो समीकरण उत्पन्न
For Private and Personal Use Only
Page #258
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
i
T
फम-१
एबाधातसमीकरबासमाधि प्रश्क। होंगे, य+4= फ (र-प) और भ(य-ब) =+ब, बत समक्रिया । य-ब+
और + (प+ ब. (भ + १ ये या और रके मानः प, कब और भ इन पदों में लब्ध हुए हैं। इस लिये इस भांति के प्रश्न. में प, फ; बार भवन के संख्यात्मक मानों से य और रके मानों में उत्यापन करने से य और र के. संख्यास्मत मान तुरंत प्राप्त होग। ..
जैसा ऊपर के प्रश्न में पा= १६, फः= ३, ब= १० और भ= ४. :: य = ब+ ( प
= 49 + ३३४३ = १० + १२ = २९, पौर, र= + + ब भ + = १६+ ३३.४५ = १६+ १५ = ३१
यो य, और र के असरात्मक मानों से इस प्रकार के प्रश्न का उत्तर लाघव, से जानने के लिये मैंने एक सूत्र बनाया है।
दानल्ये खेलोमा स्वास्वगुणेमाहले विकोणः ।
गुणघालेन हृते स्वे. स्यातामन्योन्यादानसंयुक्त। . इसका अर्थ । बागों का योगदो. स्था में खो उसको से एक से अधिक अपने २ गुण से गुण देना और उन में गुणों के गुणन. फल में एक घटा के. शेषः का भाग देओ फिर लधियों में परम्मा के दान जोड़ देओ। वे योग क्रम से उन पुरुषों के धन होंगे।
प्रश्नः । जो काम प्रा. मनुष्य: प दिन में करता है. वही काम क मनुष्य फ दिन में करता है तो अऔर क.ये दोनों मिल के साथ वही. काम कितने दिन में करेंगे का?
यहां मानो कि. और क. मिल के साथ य दिन में वह काम करेंगे और १ यह उस एक, कामः का द्योतक है, तो.
य= य.दिन में अ, के. कामः का विभाग, और 2 = यदिन में क, के काम का विभाग
य + 2 = १.:. समक्रिया से, यन-फ
For Private and Personal Use Only
Page #259
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
२४२
एकघात समीकरण सम्बन्धि प्रश्न ।
प्रश्न १० । जो काम अ और के मिल के २१ दिन में करते हैं वही काम और ग मिल के ३० दिन में करते हैं और क और ग मिल के ७० दिन में करते हैं तो हर एक मनुष्य कितने दिन में वह काम करेगा ?
यहां माना कि वह काम अ मनुष्य य दिन में करता है और क मनुष्य र दिन में और ग मनुष्य ल दिन में करता है तो वे प्रश्न के 'अव्यक्त के मान के आश्रय से और इस प्रश्न की बोली से ये तीन समीकरण उत्पन्न होंगे
यर य+र
२१,
यल रल = ३० और य+ल र+ल तब समक्क्रया से, य = ३०, र = २० और ल
Acharya Shri Kailassagarsuri Gyanmandir
= ७०
:
=∞ 1
• वह काम अ मनुष्य ३० दिन में, क मनुष्य 90 दिन में करेगा और गं मनुष्य अनन्त दिन में अर्थात वह कुछ काम नहीं करता था । अभ्यास के लिये और प्रश्न ।
(१) वह संख्या क्या है कि जिस को दूनी कर के उस में ३ मिला देओ तो योग उस संख्या के तृतीयांश से २८ अधिक होता है ?
उत्तर, १५ ।
(२) वह संख्या कौन सी है कि जिस का
और इन का
योग उस के से १० अधिक होता है ?
उत्तर, ६० ।
(३) १७ इस संख्या के वे दो भाग कौन से हैं कि जिन में एक दूसरे से ५ अधिक होवे ?
उत्तर ११ और ६ ।
(४) एक संख्या ऐसी है कि जो उस में ७ घटा के शेष को ० से गुण देओ और उसी संख्या में ३ घटा के शेष को ३ से गुण देओ तो वे दोनों गुणनफल परस्पर तुल्य होते हैं, वह संख्या क्या है ?
उत्तर
१०।
For Private and Personal Use Only
Page #260
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणसम्बन्धि प्रश्न । . (५) जिन दो संख्याओं का अन्तर दो है उन दोनों में जो १ नोड़ देओ तो पहिले योग से दसरा योग दूना होता है। वे दो संख्या क्या हैं?
(६) अ और क ये दो मनुष्य जुआ खेलने बैठे। उस समय अ, के पास ७६३ रुपये और क, के पास ५८६ रुपये थे। फिर उन की परस्पर बहुत बेर हार जीत हुई । अन्त को जब वहां से उठे तब क, के पास अ, से दूने रूपये हुए । तो अ, से क कितने रुपये जीता?
उत्तर, ३१० ।
(७) दो लड़कों में बड़ा लड़का छोटे से वय में दो बरस बड़ा था परंतु ५ बरस पहिले वय में दूना था। तब उन दो लड़कों का धय कितना २ था?
उत्तर, बड़े लड़के का वय ६ बरस छोटे का वय ७ बरस ।
(e) किसी मनुष्यने कुछ कबूतर और तोते मिल के २० पक्षी ११ रुपये पर मोल लिये उस में हर एक कबतर का मोल ( आने और हर एक तोते का मोल ७ आने था तब उन पतिओं में कितने कबतर और कितने तोते थे?
उत्तर, १८ कबूतर और २ तोते । ___ (C) एक सरोवर के मध्य में एक खम्भा खड़ा था । उस का ! भूमि में गड़ा था, कोच में था और जल में था और जल के ऊपर १११ अर्थात साढ़े ग्यारह हाथ दिखाई देता था। तो वह सब खम्भा कितने हाथ लम्बा था ?
उत्तर, ३० हाथ । (१०) एक माता का बय उसकी लड़की के वय से चौगुना था
For Private and Personal Use Only
Page #261
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
घात समीकरण सम्बन्धि प्रश्न ।
२४४
परन्तु ५ बरस पहिले नौगुना था। तो माता का और लड़की का बय
कितना २ था?
उत्तर
माता का वय ३२ बरस और लड़की का बरस ।
(११) एक मनुष्य के पास दो घोड़े और सौ रुपयों का एक जीन था जब वह मनुष्य पहिले घोड़े पर जीन रखता था तब उस जीनसमेत घोड़े का मोल दूसरे केवल घोड़े के मोल से दूना होता था और
ब वह जीन दूसरे घोड़े पर रखता था तब उस जीन समेत घोड़े का मोल पहिले केवल घोड़े के माल से तिगुना होता था तो हर एक घे का मोल क्या था सो कहो ?
उत्तर, पहिले घोड़े का मोल ६० रुपये और दूसरे का ८० रुपये |
(१२) तक मनुष्य को और क दो पुत्र थे। उस ने अपने मरणा समय में उस के पास जितना धन था उतना दोनों पुत्रों को समान बांट दिया। पीछे अ ने एक बरस में ५४० रुपये और मिला के अपने विभाग में डाल दिये और क ने अपने विभाग हि में से एक बरस में ३२५ रुपये उड़ा दिये। तब क के पास जितना धन बचा उस से के पास दूना धन हो गया। तो उस मनुष्य के मरण समय में उस के पास कितना धन था ?
उत्तर
२३८० रुपये |
(१३) एक धनिक ने पुरुष को ८ पैसे स्त्री को ५ और लड़के को १ इस क्रम से कितने एक दरिद्रों को १०० पैसे बांट दिये। उन में पुरुषों से आधी स्त्री थीं और दूने लड़के थे। तब उस में पुरुष, स्त्री और लड़के कितने २ थे ?.
उत्तर ८ पुरुष, ४ स्त्री और १६ लड़के ।
(१४) एक लड़के ने अपने बाप से पूछा कि बाबू जी मेरा वय क्या है तब बाप ने कहा कि बेटा अभि तेरा वय मेरी वय की तिहाई से
For Private and Personal Use Only
Page #262
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघात समीकरसम्बन्धि प्रश्न ।
QB號
३ बरस अधिक है परन्तु दो बरस पहिले तेरा वय मेरो वय की चौथाई से चार बरस अधिक था । तब उस समय बाप का बय क्या था चोर लड़के का क्या था ?
उत्तर, बाप का धय ३०
बरस और लड़के का १३ बरस ।
(१५) एक मनुष्य काशी से प्रयाग की ओर चला वह एक घड़ी में एक कोस चलता था फिर ४० पल पीछे उस का बड़ा भाई अपने छोटे भाई को फेर लाने के लिये उसी मार्ग पर चला वह एक घड़ी में १ कोस चलता था । तब वह बड़ा भाई अपने छोटे भाई को काशी से कितनी दूर पर मिला ?
उत्तर, ३ कोस पर
(१६) एक मनुष्य ने ८ लड़कों को एक रुपया के ६४ पैसे इस क्रम .से बांट दिये कि पहिले को जितने पैसे दिये उससे दूसरे को एक प्रधिक दिया उस से तीसरे को एक अधिक इत्या० तो हर एक लड़के को कितने २ पैसे दिये से बताओ ।
उत्तर,
पहिले को 8 है, दूसरे को ५ रे इत्यादि
(११) घड़ी में तीन बनने के उपरान्त कितने मिनिट पर मिनिट की सूई घण्टे की सूई पर ठीक लम्बरूप होती है?
उत्तर, तीन बन के ३२ मिनिट पर |
११
(१८) जब घड़ी में चार बनने के उपरान्त दोनो सूई भित्र दिशा में एक रेखा में होती है तब ठीक समय क्या होगा ?
उत्तर, ४ घण्टे और ५४ ११ मिनिट ।
(१९) जिन संख्याओं का योग १० और जिन के वर्गों का अन्तर ५१. है वे दो संख्या क्या हैं?
1
उत्तर,
१० और० ।
For Private and Personal Use Only
Page #263
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणसम्बन्धि प्रश्न । (२०) एक उपवन में प्राम, इमली और कैथ के पेड़ मिल के १००० थे उस में आम के पेड़ों से इमली के पेड़ ७५ न्यन थे और इमली के पेड़ों से कैथ के पेड़ २०० न्यन थे। तो कहो उस में आम, इमली और कैथ के कितने २ पेड़ थे?
उत्तर, आम के पेड़ ४५०, इमली के ३७५, और कैथ के १७५ ।
(२१) अ, के पास ३ रन थे उस को १०० रुपये ऋण था और क, के पास २ रन थे उस को १ रुपया श्ण था। उन दोनों ने एक मोल से सब रन बेंच के अपना २ मृण दे डाला। तब दोनों के पास समान हि द्रव्य बचा तो हर एक रन का मोल क्या था? . उत्तर, ९ रुपये।
_ (२२) एक गांव से अ, मनुष्य प्रवास करने निकला वह एक घण्टे में ३१ कोस चलता था फिर उस के ५ घण्टे पीछे उसी गांव से क, मनुष्य उसी मार्ग में चला वह हर घण्टे में ४ चार कोस चलता था तब उस गांव से कितने कोस पर उनकी भेंट भई सो कहो ?
उत्तर, १४० कोस पर ।
(२३) जिन दो नगरों का अन्तर १०० कोस है उन दो नगरों से और क ये दो मनुष्य परस्पर मिलने के लिये एक काल में चले सो १० घण्टे में मिले तब जाना गया कि अ, से क, हर घण्टे में २ दो कोस अधिक चला। तब अ और क हर घण्टे में कितना २ चलते थे?
उत्तर, अ, ४ कोस और क.६ कोस ।
- (२३) अनेक से पूछा कि तुम घड़ी के पास बैठे है। कहो क्या बजा है क ने कहा दस बज गया है। तब अ ने कहा कि ठीक समय कहो तब क ने कहा कि घण्टा में ऊपर जो १२ का चिह्न है उस से पीछे जितने अन्तर पर घण्टे की सूई है उसने हि अन्तर पर उस चिह्न के आगे मि
For Private and Personal Use Only
Page #264
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणासम्बन्धि प्रश्न । निट की सई है इस से ठीक समय जान लेओ। तो बताओ तब ठीक समय क्या था?
उत्तर, दस से ऊपर 2 मिनिट । (२५) घड़ी में जब ३ बजने के पीछे दोनो मूई एक में मिल जाती हैं तब ठीक समय क्या होगा?
उत्तर, ५ घण्टे २०६३ मिनिट । (२६) किसी मनुष्य ने पैसे के ३ इस भाव से कुछ सीताफल मोल लेके उतने हि सीताफल पैसे के ४ इस भाव से और माल लिये फिर सब वे फल २ पैसे के ७ इस भाव से बेंच डाले तब एक पैसा घाटा हुआ तो उस ने कितने २ सीताफल मोल लिये?
उत्तर, २४। (७) एक महाजन ने २५ दिन के लिये एक नौकर रखा उस से यह ठहराया था कि जिस दिन वह अच्छा काम करे उस दिन.५ आने पावे और जिस दिन वह अच्छा काम न करे वा खेले उस दिन उस से उलटा दो आने दण्ड लिया जावे । अन्त को जब २५ दिन परे हुए तब उस महाजन ने उस को तीन रुपये दिये । तब कहो उस ने कितने दिन अच्छा काम किया?
___ उत्तर, १४ दिन । (२८) अ और क ये दो मनुष्य पशुओं का व्यापार करते थे उन में
के पास ६ घोड़े, खच्चर और ८ बैल थे और क के पास ५ घोडे. १० खच्चर और १२ बैल थे। इन में एक बैल-के मोल से एक खच्चर का मोल दूना था और एक घोड़े का मोल तिगुना था। उन दोनों मनुष्यों ने अपने २ मब पशु बैंच डाले तब उस में असे क को ५७ रुपये अधिक मिले । तो उन तीन जात के पशुओं में हर एक पश का मोल क्या था?
For Private and Personal Use Only
Page #265
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
स्वघातसमीकरणसम्बन्धि प्रश्ना उत्तर, एक घोड़े का मोल ५७ रुपये, खच्चर का ३८ रूपये और बैल का १८ रुपये।
(२९) एक स्त्री कुछ फल लेके हाट में बेचने गई। वहां उसने पैसे के सात २ फल बेंचे तब दो फल शेष बचे। फिर दूसरे दिन वह स्त्री उतने हि फल लेके बेचने गई । उस दिन उसने पैसे के नो र फल बेचे सब एक फल बचा। यों उस को दो दिन के पैसे मिलके २५ मिले। तो वह दोनो दिन कितने २ फल लेके बेंचने गई सो कहो ।
उत्तर, १०० फल ।
(३०) एक भित्र संख्या का मान १ है उसके अंश में जो एक घटा देओ तो उसका मान होगा तो वह भित्र संख्या क्या है ?
उत्तर, है। (३१) एक मनुष्य ने किसी सराफ मे १३ रुपये की कुछ अठवी और चवची मिलके ३८ लिई । तब कहो उसमें कितनी अठची और कितनी चवत्री थीं?
___ उत्तर, १४ अठची और २४ चवत्री।
(३२ एक माली अपने बगीचे में से एक खंचिया भर आम ले के हाट में बेंचने गया। वहां उस ने पैसे के सात २ आम बेंचे तब खंचिया में ५ ग्राम शेष बचे । फिर उस ने दूसरे दिन भी उतने हि आम पैसे के छ २ बेंचे तो ४ शेष रहे । यों तीसरे दिन उतने हि आम पैसे के पांच २ बैंच तो ३ ग्राम शेष रहे और चौथे दिन उतने हि ग्राम पैसे के चार २ बैंचे तो खंबिया में दो आम शेष बचे। यों चार दिन के बेचने में उस माली को सब ३१५ पैसे मिले । तो यह माली नित्य कितने माम बचने के लिये ने जाता था ?
उत्सर, ४१८ प्राम।
For Private and Personal Use Only
Page #266
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघाससमीकरणसम्बन्धि प्रश्न । (२३) एक मनुष्य के पास ३५०० रुपये धम था और उसको पुष पोर कन्या मिलके १० अपत्य थे। उसने अपने अन्त समय में अपने हर एक पुत्र को ५००० रुपये और हर एक कन्या को ५०० रुपये यो सब धन बांट के मर गया। तब उसको कितने पुत्र और कितनी कन्या थीं।
उत्तर, पुत्र और ३ कन्या । (३४) एक तंबोली की दूकान में एक पैसे के १०० पान, एक पेसे की २५ सुपारी और एक हि पैसे की ५ लायची मोल मिलती थीं। एक मनुष्य ने एक पैसा उस तंबोली को देके कहा मुझ को इस में जितने पान उतनी हि सुपारी और उतनी हि लायची देओ । तब वह तंबोली इस बात को सुनतेहि कुछ चकित सा होगया । तो बताओ कि पान, सुपारी, और लायची इनकी समान संख्या क्या होगी?
उत्तर, ४। (३५) वे पास की दो संख्या कीन हैं कि जिन के घी का अन्तर ७७ होता है?
उत्तर, ३८ और ३९ । (३६) अऔर क इन दो मनुष्यों को रुपयों की एक श्रेली मिली। उस में अने १० रुपये और शेष का चतुर्थांश लिया । तब जो उस थैली में शेष रहा उस में से क ने २० रुपये लिये और नो शेष बचा उस का चतुर्थांश लिया। तब थैली में ३० रुपये शेष रहे। तो पहिले उस थैली में कितने रुपये थे और अऔर क ने कितने २ रुपये लिये ?
उत्तर' थैली में ६० रुपये थे और हर एक ने ३० रुपये लिये। (३७) एक गहेरिया के पास कुछ भेड़ी थीं। एक चोर उन भेड़ियों में से एक भेड़ो और शेष भेड़िओं का तीसरा भाग इतनी भेड़ी ले गया। सब जो उस गड़ेरिया के पास भेड़िी बची उन में से रसी भांति और तीन बार ले गया । यों बार बार में उस चोर ने भेड़ी चुरा लि।
For Private and Personal Use Only
Page #267
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
মামৰমীখি হন । तो उस गड़रिये के पास पहिले कितनी भेड़ी घों और अन्त में कितनी बच रही सो कहो। ___ उत्तर, पदिले ७६ भेड़ी थी और अन्त में १४ भेड़ी बची।
(३८) एक बनिये ने रुपया के ३० सेर के भाव से २० रुपयों के चने और २५ के भाव से ६४ रुपयों के चने मोल लिये और २० के भाव से भी और कुछ चने मोल लिये और ये तीनों प्रकार के चने इकठे कर के सब २३ सेर के भाव से बैंच डाले तो उस में उस को ५ रुपये लाभ हुआ। तो उस ने २० सेर के भाव के चने कितने रूपयों के मान लिये सो कहो?
उत्तर, ५१ रुपयों के।
.
... (३९) अ और क इन दी मनुष्यों के पास कुछ र सत्तु मिल के ११ पाव था । वे दोनों एक कंधे पर जाके खाने के लिये बैठे। वहां एक . तीसरा ग मनुष्य आया । तब उस ११ पाव सत्तु के समान तीन भाग कर के तीनों ने एक २ भाग खा लिया। अन्त में ग ने अऔर क इन दोनों को मिल के ११ पैसे दिये और चला गया। उस में से गिनती लगा के अने ७ पैसे लिये और कने ४ लिये । तो पहिले अऔर क के पास कितना २ सत्तु था?
उत्तर, अ के पास ६ पाव और क के पास ५ पाव सत्तु था।
(४०) एक मनुष्य किसी दिन प्रातः काल में अपनी घड़ी के ५ बजे घर से चल के अपने मित्र के यहां गया तब मित्र की घड़ी में साढ़े 'पांच बजा था। वहां वह ५ घंटे बेठ के जिस गति से प्रातः काल में चला था उसी गति से और उसी मार्ग से अपने घर चला आया.तब उस की घर की घड़ी में साढ़े ग्यारह बजा था । अब जो उस मनुष्य की और उस के मित्र की घड़ी की गति एकरूप और समान हो तो.
For Private and Personal Use Only
Page #268
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघाससमीकरणसम्बन्धि प्रश्न ।
२५॥ उन दोनों घड़िओं के काल में कितना अन्तर था और उस मनुष्य को मार्ग में जाने वा आने में कितना काल लगा सो कहो ? . उत्तर, दोनों घड़िओं के काल में १५ मिनिट का अन्तर था
और मार्ग में जाने वा आने में ४५ मिनिट काल लगा। . (४२) ३२० इस संख्या के ऐसे चार भाग करो कि जो पहिले में दो मिला देओ, दूसरे में ३ घटा देओ, तीसरे को ४ से गुण देओ और चौथे में ५ का भाग दे तो चारो फल समान हो?
___ उत्तर, ४२, ४७, ११ और २२० । (४२) एक जुआरी कुछ रुपये लेके जुआ खेलने बैठा । वह पहिली बार अपने द्रव्य का और एक रुपया का है जीता फिर दूसरी बार जो उस के पास द्रव्य हुआ था उस काई और एक रुपया का जीता और तिसरी बार फिर उस के पास जितना द्रव्य हुआ था उस का और एक रुपया का जीता। तब उस के पास पहिले जितना द्रव्य था उस से तिगुना हुआ । तो कहो वह पहिले कितने रुपये ले के खेलने बैठा था ?
उत्तर, ३ रुपये।
(४३) एक बाबू ने अपनी सेना वर्गाकार खड़ी किई तब १०० मनुष्य बच रहे । तब उस ने वर्ग के अनुसार हि एक २ पंक्ति में एक २ मनुष्य बठा दिया तब वर्ग का आकार पूरा होने में ४१ मनुष्य और चाहिये थे। तो कहो उस बाबू की सेना कितनी थी ? ' - उत्तर, ५००० मनुष्य । । । . (88) एक मनुष्य का बाप मर गया तब उस को जितना धन मिला उस में से उस ने १००० रुपये घर के काम के लिये अलग रख के बचा हुआ द्रव्य एक बरस में व्यापार से दूना किया तब उस में से १००० रु. पये फिर घर के काम के लिये अलग रख के बचा हुआ द्रव्य दूसरे
For Private and Personal Use Only
Page #269
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२१२
एकघात समीकरण सम्बन्धि प्रश्न |
बरस में भी व्यापार से दूना किया। यों उस ने पांच बरस तक व्यापार किया अन्त में उस के पास सब द्रव्य पहिले से सप्तगुण अर्थात् सात गुना हुआ। तब उस मनुष्य को बाप से कितना धन मिला सेो कहो ? उत्तर, २४८० रुपये |
'
(४५) दो अङ्को की ऐसी एक संख्या है कि उस के एक स्थान के प से दश स्थान का अङ्क दूना है और जो उस संख्या में २० घटा देते। तो शेष संख्या में उन्ही दो अङ्का की स्थिति पलट के रहती है वह संख्या क्या है ?
उत्तर,
६३ ।
(४६) एक बनिये ने एक रुपये के १६ सेर के भाव से कुछ चावलऔर कुछ चावल १३ सेर के भाव से मिल के ३० रुपये का मोल लिये । और वे दोनों प्रकार के चावल इकट्ठे कर के उस ने सब १४ सेर के भाव से बेंच डाले तब उस में उस को कुछ लाभ नहीं हुआ। पर कुछ घाटा भी नहीं हुआ। तो उस ने दोनों प्रकार के चावल कितने २. रुपये के मोल लिये सा कहो ?
उत्तर,
१३ सेर के भाव के १० रुपये के और १३ सेर के भाव के २० रुपये के ।
(89) मङ्गा जी में एक बड़ी नाव में नीचे ४१० सेर पानी या गया या उस को और क ये दो मनुष्य एक २ पात्र ले के बाहर फेंकने लगे । उस में अ के पात्र से क के पात्र में दूना पानी समाता था । और मनुष्य ५ पल में ३ बार पानी बाहर फेंकता था और क मनुष्य ७ पल में २ बार फेंकता था । इम प्रकार से उन दोनों मनुष्यों ने एक घड़ी और १० पल में सब पानी बाहर फेंक दिया। तो हर एक मनुष्य के पात्र में कितना २ पानी समाता था ?
उत्तर,
अ के पात्र में ५ सेर पानी और के के पात्र में १० सरे ।
For Private and Personal Use Only
Page #270
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
আগামীক্ষা মন। (४) १६८ रम संख्या के पांच विभाग ऐसे करो कि पहिले विभाग की ६ से मुण के फल में ५ जोड़ देगा, दूसरे को से गुण के ४ जोड देखो, तीसरे को ४ से गुण के बाड देखो, वा सो ३ मे गुण के २ नाह देओ और पांच को दो से गुण के १ जोड देओ तो सब योगा परस्पर समान हो। तो ये विभाग क्या हैं सो कहो?
उत्तर, १९, २२, २९, ३६ और ५९.ये क्रम से विभाग हैं। ___(BC) एक बरस में सो रुपयों को ५ रुपये व्याज के भाव से किसी मनुष्य ने कुछ सण लिया । साढे तीन बरस में उस का व्यान पण छठवें अंश से १० रुपये अधिक हुमा। तो उस मनुष्य ने कितने रुपये असा लिया था सो कहो?
उत्तर, १२०० रुपये। (५०) एक महामन ने १ बरस में सो रुपयों को ५ रुपये व्याज के भाष मे किसी मनुष्य को कुछ रुपये शुण दिया। उस मनुष्य ने चौथे बरस के अन्त में उस महाजन के सब रुपये व्याज समेत चुका दिये । परन्तु जो वह महाजन अन्त में सब व्याज चक्र वृद्धि से लेता तो उस को १५५ रुपये और १ आना इतना व्याज अधिक मिलता । तो उस मनुष्य ने उस महाजन से कितने रुपये रख लिया था सो कहो?
उत्तर, १०००० रुपये। (५१) जिन दो संख्याओं में पहिली का और दूसरी का इन का योग १६ होता है और पहिली के में जो दूसरी का घटा देओ तो दो शेष रहता है वे संख्या क्या हैं?
उत्सर, ३० र २४।।
(५२) अनेक के पास जितने रुपये थे उतने और उस को दिये सबक ने प के पास जितने शेष बचे थे उसने उस को फेर दिये
For Private and Personal Use Only
Page #271
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२५४
एकघातसमीकरणसम्बन्धि प्रश्न । ऐसा देन लेन तीन बार भया । तब दोनों के पास चांसट २ रुपये भये । तो पहिले हर एक के पास कितने २ रुपये थे?
उत्तर, अ, के पास ८५ पार क, के पास ४३ रुपये। (५३) एक तलाव में कुछ कमल थे उस पर बैठने के लिये एक भ्रमरों का समूह पाया । आते हि पहिले एकर कमल पर एक र भ्रमर बैठा । तब एक भ्रमर शेष बचा। फिर सब उड़े और एक २ कमल पर दोर बैठे तब एक कमल शेष रहा। तो उस तलाव में कमल कितने थे और वे भ्रमर कितने थे?
उत्तर, कमल ३ और भ्रमर ४ ।
(५४) अ, के पास ११ मोती एक मोल के थे और क, के पास हीरे एक मोल के थे और फिर जब उन में बहुत परस्पर वेह भया तब अ, ने ४ मोती क, को दिये और क, ने तीन हीरे अ, को, दिये
और सब मोती और हीरे उन्हों ने बेच डाले । तब हर एक को २३० रुपये मिले । तब हर एक मोती का और हीरे का क्या मोल है सो कहो। - उत्तर, मोती का मोल २० रुपये और हीरे का ३० रुपये।
(५५) अमनुष्य जो काम २४ दिन में करता है सो हि काम क मनुष्य ४० दिन में करता है तो वही काम अ और क मिल के कितने दिन में करेंगे?
उत्तर, १५ दिन में।
(E) अ और क ये दो मनुष्य मिल के जो काम २० दिन में करते हैं वही काम अकेला अ ३६ दिन में करता है तो वह काम अकेला क कितने दिन में करेगा ?
उत्तर, ४५ दिन में।
For Private and Personal Use Only
Page #272
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणसम्बन्धि प्रश्न'।
२५५ ... (५७) जिस भित्र संख्या के अंश और छेद इन दोनों में १ जोड़ देना तो उस का मान होता है और उन दोनों में १ घटा दे तो उसका मान होता है। वह भित्र संख्या क्या है?
___ उत्तर, (५८) एक मनुष्य ने १२ रुपये की कुछ चात्री और दुअत्री कर लिई उन में चवन्नी और दुअत्री की संख्या समान थी तो उसने कितने रुपये की चवची और कितने की दुअची किई सो कहो।।
उत्तर, ८ रूपये की चवची और ४ रूपये की दुअत्री। (५९) अ और क दो मनुष्यों के पास कुछ रुपये थे। उनमें अनेक से कहा कि मेरे पास जो और २५ रुपये होते तो मेरे पास तेरे रूपयों से दूने रुपये होते । तब क ने कहा कि मेरे पास जो और २० हि रुपये होते तो मेरे पास तेरे से तिगुना धन होता तो हर एक के पास कि.. तने २ रूपये थे?
उत्तर, अके पास १३ और क के पास १९ रुपये। (६०) अ, ने क, से कहा कि जो तुम हम को १ रुपया दे तो हमारे पास तुम से दूने रुपये हो जाएंगे और जो दो रुपये दे तो तिगुने हो जाएंगे। तो हर एक के पास कितने २ रुपये थे?
उत्तर, अ, के पास ७ और क, के पास ५ रुपये। (६१) एक पुरुष और उस की स्त्री दो मिल के एक बर्तन भर घी १० दिन में खाते थे। एक बेर ऐसा हुआ कि उन दोनों ने चार दिन उस में से घी साथ खाया फिर वह पुरुष कहीं बाहर चला गया तब पीछे बचा हुआ घी अमेली स्त्री ने २१ दिन में खाया तब अकेला पुरुष कितने दिन में सब घी खा सकेगा और अकेली स्त्री कितने दिन में खा सकेगी? . उत्तर, · पुरुष १४ दिन में और स्त्री ३५ दिन में ।
For Private and Personal Use Only
Page #273
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकाघातसम्मीवार सम्बन्धि मनः ।
(६२) हर एक पुरुष को दो पैसे, स्त्री को डेढ़ पैसा और लड़के को धेला इस नियम से किसी दस्ता ने २ दरिद्रों का २० पैसे बांट दिये उन दरिद्रों में पुरुषों मे लड़के ७ अधिक थे। तो बताओ उन में पुरुष, स्त्री और लड़के कितने २ थे ।
उत्तर, ६ पुरुष, १ स्त्री और १३ लड़के ।
(es) को पुरुष उस को स्त्री और पुत्र इन तीनों के वय केव की संख्याओं का योग ६५ है उस में पुरुष और स्त्री इन के वयों के अन्तर के तुल्य पुत्र का वय था और 8 बरस पहिले स्त्री का वय पुत्र के वय से सात गुना था । तब उन तीनों का वय कितना २ था ? पुरुष का वय ३२ वर्ष स्त्री का २५ चोर पुत्र का २ ।
उत्तर,
(६४) जिस भित्र संख्या के अंश में १ घटा देओ और छेत्र में १ जोड़ दे तो उस का मान होता है । और उस के अंश और केद के अन्तर के तुल्य एक नया अंश और योग के तुल्य एक नया छेत्र मानो तो उस नई भिन्न संख्या का मान होता है तब वह पूर्व भित्र संख्या क्या है ?
9
उत्तर,
(६५) जिन दो संख्याओं में पहिली में १ घटाओ और दूसरी में ३ जोड़ देओ इन दो फलों का गुणनफल और पहिनी में १ जोड़ देश और दूसरी में दो घटा देओ इन दो फलों का गुणनफल प्रत्येक उन्हीं दो संख्याओं के गुणनफल के समान होता है । वे दो संख्या ' कौन हैं ?
उत्तर,
५ और १२ ।
(६) किसी गृहस्थ के घर पर छोरी हुई। उसी समय उसने थोड़े काल तक दूधर उधर खोना पर कुछ मिला नहीं तब उस के मन में आाया कि एक घण्टा भर पहिले तो मनुष्य यहां से गया वही चोर है
For Private and Personal Use Only
Page #274
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
समीकरणसम्बन्धि प्रश्न ।
aa art जिस मार्ग में अपनी एकरूप गति से आता था उसी मार्ग पर वह रहस्य भी उस क्षेत्र को पकड़ने के लिये चानी एकरूप गति चला । यह पहिले दो घण्टे तक इसी अपनी चाल से चला और तत्र यह जाना कि चार मेरे से हर घण्टे में ५ है कोस अधिक चलता है । इस लिये उस ने तुरंत अपनी गति को दूना किया और जब वह घर से चला उस काल से ५ घण्टे में चोर को पकड़ा। तो चोर एक घण्टे मैं कितना चलता था और वह गृहस्य आरम्भ में एक घण्टे में कितना चलता था और उस ने अपने घर से कितने अन्तर पर चोर को पकड़ा सो कहो ?
Acharya Shri Kailassagarsuri Gyanmandir
उत्तर,
चोर हर घण्टे में 8 ३ कोस चलता था, गृहस्य पहिले र घण्टे में 2 कोस चलता था, और अपने घर से २९कोस पर चोर को पकड़ा ।
४
(६०) और क इन दो मनुष्यों को एक महाजन का कुछ २ ऋण था । चा ने महाजन को कुछ रुपये देके अपना कृप दूर किया और इसी भांति क ने अपना ऋण दूर किया । तब को जिवना ऋण शेष बचा उस से क को तिगुन ऋण बचा । जो इन को और तीन २ सौ रुपये अधिक ऋण ह्येता और वे इसी भांति ऋण दूर करते तो के शेष ऋण से क का शेष ऋण दूना होता तो और क को कितना र ऋण था ?
अ
उत्तर,
को ३७५ रुपये और क को १५०० रुपये प ।
(६८) किसी महाजन के पास कुछ गो घर पर थीं और कुछ गांव पर थीं । उन में हर महीने में घर की एक २ गौ को पांच २ रुपया और गांव फ्री एक २ को दो २ रुपया लगता था । इस से मांत्र की सब गौधों के लिये जितना द्रव्य लगता था उस के दूने से एक रुपया अधिक इतना घर की सब गाँवों के लिये लगता था । तब उस महाजन ने घर
१८
For Private and Personal Use Only
Page #275
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२५
एकघातसमीकरणसम्बन्धि प्रश्न । की गो गांव पर भेन दिई बस से घर की और गांव की गायों के लिये समान हि द्रव्य लगने लगा । तब पहिले उस महाजन की कितनी गो घर पर थीं और कितनी गांव पर थी ?
- उत्तर, घर पर २५ गा और गांव पर ३१ ।
(६९) दो अड्डों की एक ऐसी संख्या है कि जो उस में उन दो अड्डों के योग का भाग देओ तो भजनफल ४ आता है और उस संख्या में जो उसी का आधा जोड़ देओ तो योग उन दो अड्डों के योग के वर्ग के समान होता है। तो यह संख्या क्या है? ___ उत्तर, २४ ।
(७०) तीन संख्या ऐसी हैं कि जो उन में पहिली और दूसरी में एक २ जोड़ देओ तो पहिले योग से दसरा योग दूना होगा, जो पहिली में और तीसरी में नोड देओ तो पहिले योग से दूसरा योग तिगुना होगा और जो दसरी में और तीसरी में १ जोड देओ तो पहिले योग से दूसरा योग चौगुना होगा । तो घे तीन संख्या क्या हैं सो कहो?
उत्तर, १, ३ और १५ । (७१) दो अड्डों की एक संख्या ऐसी है की उस में जो ८ का भाग देओ तो लब्धि उन दो अड्डों के योग के आधे के समान पाती है और उस संख्या के दश स्थान के अङ्क के समान शेष रहता है । और उस संख्या के अड्डों को पलट देने से जो संख्या बनेगी उस में नो का भाग देओ तो भजनफल ६ आवेगा और पूर्व संख्या के एक स्थान के अड के समान शेष बचेगा। तो वह संख्या क्या है? . उत्तर, ३५।
(७२) अ, क, ग और घ इन चार मनुष्यों ने सायंकाल के समय गांव के बाहर एक खेत में कुछ गड़ा हुआ धन देखा और आपस में ठहराया कि कल प्रातःकाल प्राके यह सब धन बांट लेंगे। परंतु उस रात के
For Private and Personal Use Only
Page #276
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
exarashtatueम्बन्धि प्रश्न ।
पहिले हि प्रहर में मनुष्य खेत में जाके उस ने उस सब धन के चार समान विभाग किये तो शेष कुछ नहीं रहा तब उस ने उस में से एक विभाग लेके तीन विभाग वहां रख दिये । फिर दूसरे प्रहर में क मनुष्य वहां गया उस ने शेष धन के समान चार विभाग किये तोशेष १ अशर्फी बची। तब क ने वह १ अशर्फी और एक विभाग लेके शेष धन वहां रख दिया। फिर तीसरे और चौथे प्रहर में क्रम से ग और घ मनुष्य वहां गये । दनों ने भी इसी प्रकार से उस में से धन लिया उस में ग के विभाग करने में दो अशर्फी और घ के विभाग करने में तीन अशर्फी बच्चों । फिर दूसरे दिन प्रातःकाल चारो जने मिल के गये । उन्हों ने उस शेष धन के समान चार विभाग किये तो शेष कुछ नहीं रहा । तब वह एक २ विभाग चारों ने लिया और सब अपने २ घर
२५८
"
चले गये । तब ऐसा जाना गया कि क और ग को जितनी अशर्फी मिलों उन के योग से अ और घ के अशर्फियों का योग ५६ अधिक था । तो सब धन में कितनी अशर्फी थीं और हर एक मनुष्य ने कितनी २ अशर्फी पाईं से कहो ?
उत्तर सब धन में २०६० अशर्फी थीं और उस में से चने ६००, क ने ५४९, ग ने ४५३ और घ ने ३८१ अशर्फी पाईं।
(७३) पांच मनुष्यों ने कुछ धन आपस में इस प्रकार से बांट लिया कि पहिले मनुष्य ने सब धन का चौथा भाग और २४३ रुपये लिये | फिर दूसरे ने जो शेष धन बचा उस का चौथा भाग और २४३ रुपये लिये । फिर जो शेष धन रहा से भी क्रम से और तीन मनुष्यों ने इसी प्रकार से बांट लिया। तब अन्त में शेष कुछ नहीं रहा । तो बताओ वह सब धन कितना था और हर एक मनुष्य ने कितने २ रुपये लिये ?
For Private and Personal Use Only
藥材
उत्तर, * सब धन ३१२४ रुपये था और हर एक मनुष्य ने से १०२४, ०६८, ५०६, ४३२ और ३२४ रुपये लिये ।
Page #277
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरण सम्बन्धि प्रश्न 1
(98) एक बनिये ने कितने एक रुपयों के मोहूं १९ सेर के भाव के, कुछ रुपयों के १६ सेर के भाव के और ३३ रुपयों के १४ सेर के भाव के मोल लिये और ये तीनों प्रकार के गोहूं इकट्ठे करके सब १५ सेर के भाव से बेंच डाले तब उस में उस को १० रुपये लाभ हुआ । परंतु इन में जो पहिले दो प्रकार के गोहूं और छ२ रुपयों के मोल लेके मिला देता और सब १२ सेर के भाव से बेंचता तो उस को १५ रुपये लाभ होता तो उस ने पहिले दो प्रकार के गोहूं कितने २ रुपयों के मोल लिये सो कहो ?
उत्तर,
पहिले प्रकार के गोहूं ३५ रुपयों के और दूसरे प्रकार के ४३ रुपयों के ।
1
(१५) एक गाड़ी में चार चक्र थे । उन में आगे के समान दो च छोटे थे और पीछे के समान दो चक्र बड़े थे। उस गाड़ी के ३६० हाथ भूमि चलने में जितनी बार बड़ा चक्र घूमता था उस से छोटा चक्र बार अधिक घूमता था । परंतु बड़े चक्र का परिधि जो उस के के इतना और बड़ा होता और छोटे चक्र का परिधि उस के दे के इतना और बड़ा होता तो उतनी हि भूमि में जितनी बार बड़ा चक्र घूमता उस से छोटा चक्र १० बार अधिक घूमता । तो हर एक चक्र का परिधि कितने हाथ था सो कहो ?
उत्तर,
बड़ा परिधि १० हाथ और छोटा हाथ ।
(७६) एक कुण्ड ่ अ, क और ग ये तीन भरने थे। उस में केवल झरना खुला रखने से वह कुण्ड ३ घण्टे में भर जाता था और क खोल देने से ४ घण्टे में भर जाता था और ग खोल देने से पूरा कुण्ड दो घण्टे में खाली हो जाता था तो अ, क और ग इन तीनों को एक बेर खोल देने से वह कुण्ड कितने घण्टे में भर जायेगा ?
उत्तर, १२ घण्टे में |
For Private and Personal Use Only
Page #278
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
एकघात समीकरण सम्बन्धि प्रश्न
(१७) २० और २३ इन दो संख्याओं के दो २ विभाग ऐसे करो कि उन दोनों संख्याओं के पहिले विभागों का योग: २७ होवे और दूसरे विभागों का अन्तर १७ होवे ।
Acharya Shri Kailassagarsuri Gyanmandir
उत्तर,
२७ के क्रम से विभाग ८, २१ और २३ के १६, ४ अथवा २८ के विभाग २५, ४ और २३ के २, २१ ।
(८) एक मनुष्य में अपने मरणसमय में अपना सब धन अपने पुत्र को बांट दिया सो इस प्रकार से कि उस का जितना धन था उस में से बड़े पुत्र को १२०० रुपये और शेष धन का हैं (अर्थात नौवां अंश) दिया । फ़िर जो शेष धन बच्चा उस में से दूसरे पुत्र को १८०० रूपये और शेष धन दिया। यों ही आगे भी शेष धन में से हर एक पुत्र को उस की पहिले से ६० रुपये अधिक और शेष धन का दिया । तब अन्त में सत्र पुत्रों को समान धन मिला। तो उस मनुष्य का सब धन कितना था और उस को कितने पुत्र थे सो कहो ?
का
उत्तर, सब धन ३३६०० रुपये था और 9 पुत्र थे ।
४५६
(SC) तीन चङ्का की एक संख्या ऐसी है कि उस में जो उन तीनों अङ्कों के योग का भाग देना तो भजनफल ३० आता है और ६ शेष रहता है और उस संख्या में जो उस का आधा जोड़ के ३० घटा देओ तो शेष में उस संख्या के एक स्थान और शत स्थान के श्रङ्कों को स्थिति पलट जाती है और जो उस संख्या में जोड़ देओ तो योग में उस संख्या के एक स्थान और दश स्थान के श्रङ्कों की स्थिति पलटती है तो वह संख्या क्या है ?
उत्तप
(८०) दो अङ्कों की एक ऐसी श्रंख्या है कि उस में जोड़ के नेश योग में उन दो अङ्कों के योग का भाग देओ तो भजनफल ३ आता है । परंतु उन दो अङ्कों की स्थिति को पलट देने से जो संख्या बनेगी
For Private and Personal Use Only
Page #279
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२६२
एकघातसमीकरणसम्बन्धि प्रश्न ।। उन में ७ जोड़ के नो योग में उन दो अड्डों के योग का भाग देखो तो लब्धि पाती है। वह संख्या क्या है?
__ उत्तर, ३७। (८१) एक मनुष्य को पांच पुत्र थे। उस ने अपने मरण समय में अपना सब धन उन पांचों पुत्रों को इस प्रकार से बांट दिया। उप के जितने सब रुपये थे उन के समान पांच भाग किये तब एक रुपया शेष बचा। वह एक रुपया और एक भाग के रुपये सब बड़े लड़के को दिये तब जो शेष बचा उस के भी समान ५ भाग किये तब भी एकहि रुपया शेष बचा। वह एक रुपया और वह पांचवा भाग यह दूसरे लड़के को दिया और इसी प्रकार से और तीन लड़कों को भी धन दिया । तब अन्त में जो शेष धन बचा उस के भी समान ५ भाग किये तब शेष कुछ नहीं रहा तब उस ने वे पांचों समान भाग पांचों लड़कों को दे दिये । उस में सब से बड़े लड़के को सब से छोटे लड़के की अपेक्षा से ३६६ रुपये अधिक मिले। तब उस मनुष्य के कितने रुपये थे और हर एक लड़के को कितने २ रूपये मिले सो कहो।
उत्तर, उस मनुष्य का सब धन ३१२१ रुपये और पांचो लड़कों . कोक्रम से ८२९, ७०४, ६०४, ५२४ और ४६० इतने रुपये मिले।
(२) अऔर क ये दो मनुष्य अलग अलग ५००० रुपये लेके व्यापार करने लगे। कुछ दिन में अको उस व्यापार में लाभ हुआ और क को घाटा हुआ। तब अके पास क के बचे हुए धन से दूना धन हो गया। परंतु क को जितना घाटा हुमा इतना नो अको लाभ होता
और अको जितना लाभ हुआ इतना क को घाटा होता तो अके पास क के बचे द्रव्य से तिगुना द्रव्य हो जाता । तो अको कितने रूपये लाभ हुआ और क को कितने रुपये घाटा हुआ सो कहो। ..
उत्सर, अको ३००० रूपये लाभ हुआ और क को १००० रुपये
घाटा सुधार
--11T
For Private and Personal Use Only
Page #280
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघात समीकरणसम्बन्धि प्रश्न ।
२६३
(६३) एक नदी के तौर पर और क ये दो गांव परस्यर १२ कोस के अन्तर पर थे । उस में उस नदी का जल अ गांव से क गांव की और वेग से बहता था। एक डोंगी गांव से क गांव की ओर नदी के बीच धारा में चलाई वह दो घण्टे में क गांव में पहुंची। उस का फिर गांव में ले आाना था और नदी के बीच धारा में जल का वेग १ वेग था । बहुत था परंतु तीर के पास उस वेग का इस लिये होंगी का तीर के पास होके चलाया तब वह ३ घण्टे में गांव में पहुंची तो १ घण्टे में पानी की और डोंगी की गति कितनी २ थी । १ घण्टे में पानी की गति १३ कोस और डोंगी की ४ ३ को
३
उत्तर,
(८) अ, क और ग इन तीनों के मिल के १०००० रुपये थे उस में श्र और के इन के रुपये मिल के क से १८४२ अधिक थे और क और ग इन के रुपये मिल के से २९१६ अधिक थे तब हर एक के कितने २ रुपये थे ?
उत्तर,
के ३५४२, क के २३०९ और ग के ४०७९ ।
(८५) एक बर्तन ६ सेर दूध और ४ सेर पानी इकट्ठा मिला के उस में भरा हुआ था और दूसरा बर्तन ३ सेर दूध और ५ सेर पानी मिला के उस से भरा हुआ था । अब इन दोनों बर्तनों में से कुछ कुछ मिश्र पदार्थ ले के एक तीसरा सेर का बर्तन भर देना है ऐसा कि जिस आधा दूध और आधा पानी होवे तो हर एक पात्र में से कितना २ मिश्र पदार्थ लिया चाहिये सो कहो ?
उत्तर,
पहिले में से ५ सेर और दूसरे में से ४ सेर |
(EE) एक बनिये ने कितने एक रुपयों के चावल १५ सेर के भाव से मोल लिये और कितने एक रुपयों के ११ सेर के भाव से लिये । और वे दोनों प्रकार के चावल इकट्ठे कर के १२ सेर के भाव से बेंच
For Private and Personal Use Only
Page #281
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
रामघातसमीकरणसम्बन्धि प्रश्न । . डाले। तब उस को उस में १०० रुपये लाभ हुआ। परंतु उस ने जितने रुपयों के चावल १५ सेर के भाव से मोल लिये उतने रूपयों के नो ११ सेर के भाव से मोल लेता और ११ के भाव के मोल लेने में जितने रुपये लगे उन रूपयों के १५ के भाव के मोल लेता और फिर उन को मिला के पहिले के नाई बेंच डालता तो उस में उस को ११० रुपये लाभ होता। तो उस ने कितने २ रुपयों के दोनों प्रकार के चावल मोल लिये
उत्तर, ६१५ रुपयों के चावल १५ सेर के भाव से मोल लिये
और ६४५ रुपयों के चावल ११ सेर के भाव से लिये।
(८७) एक मनुष्य के पास तीन थैली समान रूपयों से भरी हुई थी वह तीनों थैली ले के बाजार में गया। वहां एक जवहरी की दुकान पर नाके अपनी एक थैली में से ५ रुपये निकाल लिये तब थैली में जितने रुपये बचे उतने उस जवहरी को दे के उस से दो हीरे मोल लिये। इसी प्रकार से अपनी दूसरी थैली में से १५ रुपये ले के शेष रुपये उस जवहरी को दिये और २४ मानिक माल लिये और यों ही तीसरी थैली में से २५ रुपये ले के शेष रूपये जवहरी को दिये और उस से ५५ माती मोल लिये। उस में एक हीरा, एक मानिक और कमोती इन तीनों का मोल मिल के २ रुपये था। तो एक २ रत्र का अलग २ कितना माल था और हर एक थैली में कितने रूपये थे सो कहो?
उत्तर, एक हीरे का मोल ७५ रुपये, मानिक का ५ रुपये और
मोती का २ रुपये और हर एक थैली में १३५ रूपये थे।
(ES) किसी महाजन ने ७००० रुपयों के दो विभाग कर के अलग २ भाव से रण दिये उस में बड़े विभाग में एक बरस में सौ रुपयों का जितना ध्याज था उस से छोटे विभाग में ३ रुपये अधिक था। पीछे कुछ काल में बड़े विभाग में सौ को एक रुपया ध्यान बहा दिया
For Private and Personal Use Only
Page #282
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एमघातसमीकरणसम्बन्धि प्रश्न । और छोटे में सो को उतना ही घटा दिया । इस से सब रुपयों का व्याज उस के के इतना बढ़ गया। परन्तु जो बड़े विभाग में ध्यान का भाव ज्यों का त्यों रख के छोटे विभाग में सौ का व्याज दो रुपये घटाया जाता तो एक बरस में सब रुपयों के व्याज के से ५० रुपये अधिक व्याज प्राता। तो मल धन के दो विभाग कितने २ थे और हर मक विभाग में सो को किसाना व्याज था सो कहो?
उत्तर, बड़ा विभाग ४००० रुपये और छोटा ३००० रुपये और बड़े में एक बरस में सौ को ५ रुपये व्याज और छोटे में रुपये।
(८) एक पाराम (अर्थात बगीचा) आयत क्षेत्र के आकार का था उस में एक कोने में उसी प्रकार का एक तलाव ऐसा था कि उस का कर्णसूत्र आराम के कर्णसूत्र ही में था और उस की परिमिति (अर्थात चारों भुजों का योग) आराम की परिमिति से ४२० हाथ न्यन थी और उस का क्षेत्रफल पाराम के क्षेत्रफल का है अर्थात पोडशांश था। नो उस आराम की लम्बाई ४ हाथ और अधिक होती और चौडाई ३.हाथ अधिक होती तो उस आराम का क्षेत्रफल २ वर्ग हाथ बढ जाता। तो उस पाराम की परिमिति कितनी थी और उस की लम्बाई और चौडाई कितनी २ थी?
उत्तर, आराम की परिमिति ५६० हाथ, लम्बाई १६० हाथ और
चौड़ाई १२० हाथ ।
(९०) एक महाजन ने ३०३७ रुपयों के विषम तीन विभाग कर के तीन मनुष्यों को मण दिये। उस में एक बरस में सौ रूपयों को ४ रूपये व्याज के भाव से पहिले मनुष्य को दिये, ५ रुपये व्याज के भाव से दूसरे को और ६ रुपये ध्याज के भाव से तीसरे को दिये। उन तीनो मनुष्यों ने अढाई बरस में अपना र व्याज समेत ऋण समाम हि ले
For Private and Personal Use Only
Page #283
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
२६६
एकघात समीकरण सम्बन्धि प्रश्न ।
-आके महाजन को दे दिया उस से तीनों ऋणमुक्त हुए। तो उस महाजन ने हर एक मनुष्य को कितना २ ऋण दिया था सो कहो ? पहिले मनुष्य को १०३५ रुपये, दूसरे को १०१२ रुपये और तीसरे को ९९० रुपये ऋण दिया था ।
उत्तर,
Acharya Shri Kailassagarsuri Gyanmandir
(९१) अ, क और ग इन तीन बनियों के पास कुछ २ रुपये थे । उस में ने अपने रुपयों के १२ मेर के भाव से चने मोल लेके १० सेर के भाव से बेंच डाले । यों क ने अपने रुपयों की १० सेर के भाव से दाल ले के ८ सेर के भाव से बेंच डाली और ग ने अपने रुपयों के सेर के भाव से चावल ले के ६ सेर के भाव से बेंच डाले । तब अ, क और ग इन तीनों को मिल के २१ रुपये लाभ हुआ। जो वे तीनों पहिले अपने सब रुपये इकट्ठे कर के उन सब के ९ सेर के भाव से गोहूं माल ले के 9 सेर के भाव से बेंच डालते तो तीनों को मिल के २४ रुपये लाभ होता । परंतु पहिले व्यापार से इस व्यापार में क को जितना अधिक धन मिलता उतना हि ग को घाटा होता । तो हर एक बनिये के पास पहिले कितने २ रुपये थे ?
उत्तर,
पैसे थे ।
उत्तर,
के पास ३५, क के २६ और ग के २१ रुपये थे । (९२) किसी दाता के द्वार पर कुछ पुरुष, स्त्री और लड़के भीख. मांगने के लिये खड़े थे । उन में पुरुषों से स्त्री ४ अधिक थीं और स्त्रियों से लड़के ६ अधिक थे । तब वह दाता घर में से समान पैसों से भरी हुई तीन थैली बाहर ले आया । उन में एक थैली के पैसे सब पुरुषों को समान बांट दिये, दूसरी के सब स्त्रियों को और तीसरी के सब लड़कों को । तब जाना गया कि हर एक लड़के को जितने २ पैसे मिले उन से हर एक स्त्री को एक एक पैसा अधिक मिला और हर एक पुरुष का दो दो पैसे अधिक मिले। तो उन याचकों में पुरुष, स्त्री और लड़के कितने २ थे और प्रत्येक थैली में कितने पैसे थे ?
4
२० पुरुष, २४ स्त्री और ३० लड़के और प्रत्येक थैली में १३०
For Private and Personal Use Only
Page #284
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकareमीकरणसम्बन्धि प्रश्न ।
789
पहिले
(९३) को मनुष्य एक दिन अपने गांव से दूसरे गांव चला । वह कुछ कोस तक अपनी साधारण गति से चला जब उस ने जाना कि जिस गांव पर जाना है वह यहां से कोस दूर है तब उसने अपने चलने का वेग १ घड़ी में एक कोस अधिक जाने का किया । परंतु जो वह अपने बैग को न बढ़ाता और अपनी साधारण गति से चनता तो उस दूसरे गांव में डेढ़ घड़ी पीछे से पहुंचता और जो प्रारम्भ ही से वह बढ़ाए हुए वेग से चलता तो उस गांव में १ घड़ी पहिले पहुंचता । तो उन दो गांव के बीच में कितने कोस अन्तर था ?
उत्तर १५ कोस ।
(९४) अ, क, ग, और घ ये चार मित्र रत्नों के व्यापारी थे। उन में के पास समान मान के १६ मानिक थे। वैसे ही क के पास २० नीलमणि, ग के पास २ मोती और घ के पास 9 होरे थे। इन में हर एक ने अपने पास का एक २ रन और तीनों को दिया। तब सब के जितने २ रन हुए उन का द्रव्य तुल्य हुआ । अब चारो जात के चार रनों का मोल मिल के २५० रुपये था। तो हर एक रत्न का मोल क्या था सेा कहा ?
उत्तर, एक मनिक का माल ४४ रुपये, नीलमणि का ३३ रुपये, मोती का ६ रुपये और हीरे का १७६ रुपये ।
(९५) अ, क, ग र घ ये चार मनुष्य पशुओं का व्यापार करते थे उन में के पास घोड़े, ३ ऊंट, बैल और कुत्ते इतने पशु थे और ये ही पशु, के के पास क्रम से ४, ८, ३ र २ थे, ग के पास ७,५, २ और ३ थे और घ के पास ९, २, ४ और १ इतने थे । इन चारो व्यापारियों ने अपने २ सब पशु बेंच डाले इस से सभों को समान रुपये मिले । अब इन में सब सजातीय पशुओं का माल समान था और इन चारों जात के चार पशुओं का मोल मिल के १८६ रुपये था। तो हर एक पशु का मोल क्या था सो कहो ?
उत्तर,
एक घोड़े का मोल ८१ रुपये, ऊंट का ७२, बेल का ३० और कुले का ३ रुपये ।
For Private and Personal Use Only
Page #285
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
ময়মনীখি হন। .... (६) एक कुण्ड में पानी पाने के लिये चार झरने थे जो चारों खुले रहें तो एक दिन रात में अर्थात २४ घण्टे में चारो झरनों से पानी मिल के ७३ मन भावे । और इतना उस कुण्ड में नहीं समाता था। परंतु ओ पहिला झरना १२ घण्टे खुला रहे और तीनों दिन रात खुले रहे तो समय कुण्ड जल से भर जावे । वा जो दूसरा झरना ८ घण्टे खुला रहे और तीनों दिन रात खुले रहे तभी कुण्ड समय जल से भर जाधे। वा जो तीसरा झरना ६ घण्टे और सब तीनों २४ घण्टे तक खुले रहे तौभी वह जल से भर जाता था। ऐसा हि नो चौथा झरना केवल घण्टे ४८ मिनिट तक खुला रहे और सब रात दिन खुले रहे तभी एक अहोरात्र में सब कुण्ड जल से पूर्ण होता था। तो २४ घण्टों में हर एक झरने से कितना २ पानी आता था और उस कुण्ड में कितने मनः पानी समाता था सो कहो।
उत्तर, पहिले भरने से २४ मन, दूसरे से १८, तीसरे से १६ और . चौथे से १५ और उस कुण्ड में ६१ मन पानी समाता था ।
(७)। अ. क, ग और घ ये चार मनुष्य कुछ २ रुपये लेके दूक? यत खेलने बैठे उस में अ और घ के रूपये मिलके क और ग के रुपयों के योग से २४४ अधिक थे। उस खेल में पहिले अ मनुष्य जीता तब उस ने अपने पास जितने रुपये थे उतने २ रूपये और तीनों से ले लिये। फिर दूसरी बार खेल में क जीता तब उस ने भी अपने पास जितना धन था उतना २ धन औरों से लिया। तब क्रम से ग, और घये दोनो जीते उन्हों ने भी वैसा ही धन औरों से लिया । तब अन्त में सब के पास समान रूपये हो गये। तब खेल के आरम्भ में हर एक के पास कितने २ रुपये थे सो कहो। ।
उत्तर, अके पास १२५, क के २२५, ग के ३०५ और घ के ३६८ रुपये।
(८)। एक मनुष्य ने ३ रुपयों के ५ कबूतर, ५ रुपयों के ७ सारस पक्षी, ७ रुपयों के हंस पक्षी और रूपयों के ३ मोर इस भाव से १००
For Private and Personal Use Only
Page #286
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
ইয়ানমীক্ষাযা সহন। रुपयों के १०० पक्षी इसी भांति मोल लिये कि उनमें जितने सारस पती थे उतने हि मोर थे और जितने रुपयों से हंस पक्षी मोल लिये उस से दूने रुपयों के मोर लिये तो बताओ उस मनुष्य ने वे चारो जाति के पती कितने २ मोल लिये ?
उत्तर, ४५ कबूतर, १४ सारस पक्षी, २७ हंस और १४ मार ।
(EC) पांच मनुष्य अपने पास कुछ २ धन ले के इकडे यत खेलने बैठे उन में प्रारम्भ में पांचवे मनुष्य के पास जितने रुपये थे उस से पहिले मनुष्य के पास ३२५ रुपये अधिक थे। तब खेल में पहिले हि प्रथम मनुष्य हार गया तब उसने और चारों के पास जितना २ धन था उस के आधे से एक रुपया अधिक इतना २ धन सब को दिया । इसी भांति दसरा तीसरा इत्यादि मनुष्य क्रम से हार गये और उन्हों ने भी ऐसा हि धन औरों को दिया । तब अन्त में सभी के पास समान रूपये हो गये। तब खेल के प्रारम्भ में हर एक मनुष्य के पास कितने २ रुपये थे सो कहो।
उत्तर, पांचों मनुष्यों के पास क्रम से ४३५, ३००, २१०, १५०
और ११० इतने रुपये थे।
(१००) एक गढ के चारों कोनों पर मिल के १९४० योधा लोग रहते थे। एक बार जिस कोने पर थोडे लोग ये उधर शत्र के लड़ने लगा.तब उस कोने पर जितने लोग थे उतने हि उतने लोग और तीन कोनों से उस पर आके वहां से उस शत्रु को हटा दिया पर उन लोगों में से लड़ाई में आधे लोग मर गये । तब शत्रु दूसरे कोने पर गया वहां भी ऐसा हि हुआ और योंही तीसरे और चौथे कोने पर हुआ। फिर देखते हैं तो सब कोनों पर समान लोग हुए तो पहिले हर एक कोने पर कितने २ लोग थे? उत्तर, पहिले कोने पर २००, दूसरे पर ५०, तीसरे पर ५७०,
और चौथे पर ६५० ।
For Private and Personal Use Only
Page #287
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
50
एकघात समीकरण सम्बन्धि प्रश्न ।
९३ । अब इस के उत्तर पक्रमों में प्रश्नसम्बन्धि कुछ इस अध्याय को और पूर्वार्ध को भी समाप्त करते हैं ।
Acharya Shri Kailassagarsuri Gyanmandir
विशेष कह के
ऊपर के प्रक्रम में जो प्रश्न लिखे हैं इन में जहां किसी पदार्थ की सामान्य रूप से गति की चर्चा आवेगी वहां उस गति को एकरूप समझना चाहिये। जैसा । किसी मनुष्य को वा जल के प्रवाह की गति १ घड़ी में कोस कही हो तो वह मनुष्य वा जल दो घड़ी में २ फोस, तीन में ३ अ, चार में 8 अ और य घड़ी में अथ कोस गति जानो । इसी प्रकार से कीसी करने में से पानी के आने वा जाने की बात जहां हो वहां भी एक पल में जितना पानी आवेगा वा जायगा दो पल में उस से दूना, तीन पल में उस से तिगुना उत्पादि जानो । ऐसा हि कोई मनुष्य जो कुछ काम बनाता हो उस में एक घड़ी में जितना बनता हो दो घड़ी में उस से दूना और घड़ी में उस से गुण इत्यादि । इसी प्रकार से सजातीय प्राणियों के सामान्य रूप से बेंचने वा मोल लेने में सब सजातीय प्राणियों का मोल समान जानो । इत्यादि सर्वत्र इस में गति की वृद्धि वा ह्रास और सजातीय पदार्थ का माल इत्यादि को एकरूप समझो। और किसी की अनियत गति वा मान से प्रश्न का उत्तर न बनेगा ।
For Private and Personal Use Only
४८ । बीजगणितसंबन्धि प्रश्न के उत्तर में जब कि धन, धान्य आदि पदार्थ वा देश अर्थात् रेखा, क्षेत्र इत्यादि जिस में लम्बाई रहती है वा काल अर्थात् घड़ी, दिन मास इत्यादि इसी को संख्या प्रायः रहती है और वह अभिच वा भित्र प्रत्येक धन वा ऋण होती है । उस में व्यक्तगणित में केवल संख्या का अभिवत्व और भिनत्व मात्र दिखलाया है परंतु उस के धनत्व और ऋणत्व की चर्चा उस में नहीं है । यह चर्चा बीजगणित में है । इस लिये अब हम पदार्थ, देश और काल दून के धनत्व और ऋणत्व के विषय में कुछ यहां संक्षेप से लिखते हैं ।
Page #288
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
. एकघात समीकरण सम्बन्धि प्रश्न ।
२७१
किसी के पास जो द्रव्य वा धान्य इत्यादि पदार्थ उसी का है वह उस का धन है इस लिये उस पदार्थ की संख्या धन कहाती है और जो पदार्थ उस के पास दूसरे का हो वह उस का ऋया है इस लिये उस पदार्थ की संख्या ऋणा कहाती है । यों पदार्थ का धनत्व और ऋणत्व है । इसी प्रकार से जब एक स्थान से कोइ किसी एक दिशा में चला जाता है तब उस का उस स्थान से जितना अन्तर हो वह अन्तर देश उस का धन है । इस लिये उस अन्तर देश की संख्या धन कहलाती है । और जब वह उसी दिशा की विपरीत दिशा में चलेगा अर्थात् उसी मार्ग में पीछे चलेगा तब वह चलने का देश उस का ऋण है इस लिये उस उलटी दिशा में चले हुए देश की संख्या ऋण कहाती है । जैसा को मनुष्य किसी नगर से पूर्व दिशा में १० कोस गया और फिर वहां से लौट के पश्चिम दिशा में अर्थात् पूर्व दिशा की विपरीत दिशा में 9 कोस पीछे चला गया तब यहां १० यह संख्या धन है और यह ऋण संख्या है । यहां जो ऐसा प्रश्न हो कि वह मनुष्य तब उस नगर से कितनी दूर पर किस दिशा में होगा ? तो यहां + १० और – ७ इन का योग + ३ है इस लिये वह मनुष्य उस नगर से ३ कोस पर होगा और तीन धन है इस लिये उस नगर से पूर्व दिशा में होगा । यह उस प्रश्न का उत्तर है । और जो वह मनुष्य लौट के पश्चिम दिशा में १२ कोस चला हो तो यहां १२ यह संख्या
7
-
1
होगी । तब + १० और १२ इन का योग - २ है इस लिये वह मनुष्य उस नगर से पश्चिम में दो कोस पर होगा । यह उत्तर है । यों देश का धनत्व और ऋणत्व है । और इसी भांति किसी क्षण से जैसा सूर्योदय से १० घड़ी बीती हैं यह १० संख्या धन है तब यहां से पीछे उलटा जो काल होगा उस की संख्या ऋण है। यों काल का धनर्णत्व है । यों सर्वत्र धन संख्या से विपरीत ऋण संख्या जानो । इस लिये प्रश्न के उत्तर में जो कोइ मान ऋण आत्रे तो जो वह वृद्धि का मान हो तो उतना ह्रास जानो । जो ह्रास का मान ऋण आवे तो उतनी वृति समझो। यो जो लाभ का मान ऋण हो तो उतनी हानि
For Private and Personal Use Only
Page #289
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
२७५ एमघाससमीकरणसम्बन्धि प्रश्न । जानो । नो हानि का मान सम हो तो उतना लाभ जानो । इत्यादि। यो जो पर्व देश का मान या आवे तो वह पश्चिम देश का मान होगा। पश्चिम देश का मान जय हो तो पर्व देश का होगा । घों उम्र देश के ऋण मान को दक्षिण देश का और दक्षिण देश के सण मान को उत्तर देश का मान जानो । इत्यादि । इसी प्रकार से किसी क्षण से उत्तर भार्यात भविष्यत् काल का मान जो ऋण आवे तो वह उस क्षण के पीछे का उलटा काल अर्थात् भूतकाल जाना । जो भूतकाल का मान ऋण आवे तो वह भविष्यत् काल का जानो । इत्यादि । यों ही जब प्रश्न के उत्तर में केवल संख्या का मान गुण आवे तो प्रश्न की बोली में जहां उस संख्या को जोड़ने कहा होगा वहां घटाना और जहां घटाना कहा होगा वहां नोड़ देना कहो । इस लिये प्रश्न के उत्तर में जो ऋण मान आवे तो ऊपर जो ऋणात्व का प्रतिपादन किया है उस के अनुसार प्रश्न के उस उत्तर की प्रतीति कर लेओ।.
१५। ऊपर के प्रक्रम में नो प्रतिपादन किया है उस का अच्छी भांति बोध होने के लिये इस में बीजसत्र का लक्षण लिख के उस पर और कुछ विशेष लिखते हैं।
बीजगणित के प्रश्न में जो मान व्यक्त अर्थात् ज्ञात हैं उन के स्थान में अ, क इत्यादि वा प, फ इत्यादि अक्षर मान के को अव्यक्त राशि का मान उन्हीं अक्षरों में ले पाओ तो अन्त में जो समीकरण उत्पन्न होता है अर्थात जिस में अव्यक्त राशि के समान व्यक्त राशियों के द्योतक अतरो में एक पत्त उत्पन्न होता है वह समीकरण 'ब्रीजसत्र' कहलाये। इस बीजसूत्रसंज्ञक समीकरण में व्यक्त अक्षरों का उन की संख्याओं से उत्थापन करने से तुरंत अव्यक्त राशि का मान ज्ञात होता है। और इस प्रकार से जिस प्रश्न का बीजसत्र उत्पन्न करो उस से उस प्रश्व के सनातीय जितने प्रश्न होंगे उन सभों का उत्तर केवल व्यक्त की सोनि से जानने का सूत्र अर्याल विधि उत्पन्न होता है। जैसा कम
For Private and Personal Use Only
Page #290
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
पघातसमीकरण सम्बन्धि प्रश्न ।
(९२) वे प्रक्रम में जिन प्रश्नों का गणित करके दिखलाया है उन में (ब) वे और (९) वे प्रश्न के गणित में उस २ प्रश्न का बीजसून उत्पन्न किया है। इस बीजसूत्र पर और विचार करने के लिये कुछ प्रश्न लिखते हैं ।
समक्रिया से
Acharya Shri Kailassagarsuri Gyanmandir
प्रश्न १ । जिस संख्या को में घटा के अन्तर को क में जोड़ देओ तो योग ग होता है वह संख्या क्या है ?
मानो,
थ. वह संख्या
तब,
क + (-) ग
या + क ग
इस लिये य = आ + क - ग, यह इस भांति के प्रश्न का बीजसूत्र है । इस में अ, क और ग इन का मान चाहो से मान के उन का उत्थापन करने से य का मान तुरंत ज्ञात होगा
जैसा । जो अ = ४, क - ५ और ग = = ६माना तो य - ४+५-६-३॥
अर्थात् जिस संख्या को 8 में घटा के अन्तर को ५ में जोड़ देओ सो योग ६ होता है वह संख्या ३ है । क्यों कि ३. को ४ में घटा देने से अन्तर १ होता है इस को ५ में जोड़ देओ तो योग छ होता है । दूस लिये ३ यह उस संख्या का मान ठीक है ।
परंतु जो ऋ = ५, क. =२ और ग= 8 मानो
तो
यः =५+७-४=51
अर्थात् जिस संख्याको ५ में घटा के अन्तर को 9 में जोड़ देन बा योग ४ होता है वह संख्या ८ है । इस लिये उस संख्या का मान जो कहें तो प्रश्न की बोली के अनुसार इसकी प्रतीति नहीं होती। क्या कि यह संख्या पहिले हि ५ में नहीं घट सकती । यों लोक में यह उत्तर अनुपपत्र अर्थात् प्रतीति करने के योग्य नहीं है । इस लिये ऊपर के प्रशम में जो ऋणत्व का प्रतिपादन किया है उस के अनुसार इस: प्रश्न की बोली यों पलट दिई जावे कि जिस संख्या में ५ घटा के प्र
4
For Private and Personal Use Only
Page #291
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
२००
एकघात समीकरण सम्बन्धि प्रश्न ।
नसर को ० में घटा देश्रो तो अन्तर ४ होता है तो इस प्रश्न का यह
उत्तर उपपत्र अर्थात् प्रतीति के योग्य हो सकता है ।
इस प्रकार से श्रीभास्कराचार्य ने भी लिखा है कि
www.kobatirth.org
यत्र क्वचिच्छुद्विविधौ यदेह शोध्यं न शुध्येद्विपरीतशुद्धा । - विधिस्तदा प्रोक्तवदेव किंतु यो वियोग: सुधिया विधेयः ॥
इस का अर्थ | यहां जब कहीं अन्तर करने में घटाने को संख्या न घट सके वहां उलटा घटा के (अर्थात् जिस में घटाना है उसी को घटाने की संख्या में घटा के) उस अन्तर से आगे जो विधि कहा हो उसी के अनुसार बुद्धिमान् सब गणित करें किंतु जहां योग करना हो वहां अन्तर करे ।
इसी प्रकार से य = अ + क - गइस बीजसूत्र में जो अ = ३, क- ८ और ग = १३ मानो
तो य = ३+६ . १३ -- 1
अर्थात् जिस संख्या को ३ में घटा के अन्तर को में जोड़ दे तो योग १३ होता है वह संख्या क्या है ? इस प्रश्न का उत्तर आता है ! परंतु केवल ऋण संख्या लोक में अनुपपत्र है इस लिये ऊपर के प्रक्रम के अनुसार इस प्रश्न की बोली यों पलट दिई नावे कि जिस संख्या को ३ में जोड़ के योग को में जोड़ देवो तो योग १३ होता है तो वह संख्या २ है यह इस प्रश्न का उत्तर प्रतीति के योग्य होता है।
यहां माना कि य इस लिये अ + य
समक्रिया से,
Acharya Shri Kailassagarsuri Gyanmandir
प्रश्न । आा मनुष्य का वय फब चा का वय का के वय से
य
=
1
बरस है और का का क बरस है तो
गगुण
होगा ?
बरस के उपरान्त गगुण होगा
ग (ऋ + य)
श्र- - कगः ग- १
For Private and Personal Use Only
Page #292
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एकघातसमीकरणसम्बन्धि प्रश्न । इस लिये इस जाति के प्रश्न का य=-का यह बीजसूत्र है। एस में अ, क और ग दुन का इष्ट संख्याओं से उस्थापन करने से य का मान स्पष्ट होगा।
अब इस बीजसत्र को देखने से स्पष्ट ज्ञात होता है कि जो इस में य का मान धन अभीष्ट हो तो कोर ग दून के गुणनफल से का मान अवश्य बड़ा चाहिये नहीं तो य का मान घण होगा।
नेसा । जो = २५, क = ११ और ग-२ तो य = २५-११४२३ अर्थात आ का धय २५ बरस और का का ११ बरस हो तो तीन बरस उपरान्त पा का वय का के वय से दूना होगा।
परंतु नो अ= ३४, क = १८ और ग-२ तो य = ३४२१९४२=-२।।
यहां कग से अका मान छोटा है इस से य का मान पण दो है इस लिये ऊपर के प्रक्रम में नो लिखा हैं उस के अनुसार यहां पा का वय ३४ बरस और का का वय १८ बरस हो तो पा का वय का के वय से टूना कब होगा? इस प्रश्न का यह उत्तर होगा कि दो बरस पहिले आ का वय का के वय से दूना था ।
इस प्रकार से यहां स्पष्ट है कि धन मान जो भविष्यतकाल का हो तो क्षण मान भूतकाल का होगा।
प्रश्न ३ । एक कुण्ड में अ, क और ग ये तीन पानी के झरने हैं उन में जो अपौर क ये दो झरने एक काल में खोल देओ ते वह कण्ड पघड़ी में जल से भर जाता है, जो अऔर ग ये दो खोल दे तो वह कुण्ड फ घड़ी में भरता है और क पार ग इन दो झरनों को बाल देने से वह कुण्ड ब घड़ी में भरता है तो अलग २ एकर झरना बुला रखने से वह कुण्ड कितनी २ घड़ी में भरेगा?
For Private and Personal Use Only
Page #293
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
इस लिये -2
घ
कघात समीकरसम्बन्धि प्रश्न ।
माना कि च क और ग मे तीन भरने अलग २ काल में खुले रखने
से कम से यर और स घड़ी में सब कुण्ड जल से भर जायगा
42+3 के और है + ले बे
१ १
प य
+
=
:: समक्रिया से, य =
www.kobatirth.org
२ पफब
२ फेब
पब + फब - पफर = पफ + फब
२ पफब
पब + फब - पफ
और
ल =
२ पफब पफ+ पब- फब
इस प्रकार से इस प्रश्न में तीन अव्यक्तों के लिये तीन बीजसूत्र हैं । इन में जो प १५ और ग = २० हो
= १२, फ
तो थ
२०,
शपफब
३०,
पफ + फब - पत्र
७२००
५ पफब पफ + पब फब
१२०
६० ।
और ल अर्थात् एक कुण्ड में तो और क ये दो भरने एक साल में खोल देओ तो वह कुण्ड १२ घड़ी में जल से भरेगा, अ और ग को एक काल मैं खोल दे तो १५ घड़ी में भरेगा और क और ग को खोल देथे। तो २० घड़ो में भरेगा। तो अलग २ काल में हर एक झरने से कितनी र घड़ी में वह कुण्ड जल से भरेगा ? इस में अ, क और ग ये तीनो भरने अलग २ काल में खुले रखने से वह कुण्ड क्रम से २०, ३० और ६० घड़ी में भर जायगा ।
परंतु इन बीजसूत्रों में जो प
२ पदब
तो, य = पब+फब - पफ
—
Acharya Shri Kailassagarsuri Gyanmandir
७२००
३६०
1
०२००
२४०
१२, फ = ३० और ब
: २०,
४३२०० ०२०+१८००-३६० २ पफब .४३२०० र - पफ + फब पत्र ३६० +१८०० २ पफब ४३२०० पफ + पब फब ३६० + ०२०- १८००
३०,
४३२०० - ७२०
- ६०॥
ल =
अर्थात् अ, क और ग इन तीनों झरनों में द्वार भरने खुले रखने 'से नो वह कुण्ड क्रम से १२, ३० और ६० घड़ी में भरेगा तो केवल भरना खुला रखने से २० घड़ी में भरेगा, क खुला रखने से ३० घड़ी में भरेगा और ग झरने के काल का मान ऋण ६० घड़ी आया है परंतु
- पत्र '
For Private and Personal Use Only
६० माना
=
४३२००
१४४० - ७२०
४३२०० २५६०
-
Page #294
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
एक और द्वीष्टकर्म । अपर के प्रक्रम में दिखलाया है कि काल की सण संख्या भूतकाल की अर्थात पीछे के काल की द्योतक है । इस लिये जैसा अऔर क झरनों के काल का मान धन है इस कारण से जब कुण्ड जलरहित है उस काल के उपरान्त २० घड़ी तक अझरना खुला रहे वा ३० घड़ी तक क झरना खुला रहे तो वह कुण्ड नल से पूर्ण हो जाता है तैसा ग झरने के काल का मान श्ण होने से जब कुण्ड जलरहित है उस काल के पीछे ६० घड़ी तक ग झरना खुला रहे तो वह कुण्ड जल से पूर्ण रहता है। यह ६. घड़ी के क्षणत्व का अर्थ है । इस से स्पष्ट प्रकाशित होता है कि उस कुण्ड में अ और क ये दो झरने उस में पानी आने के लिये थे और इन से क्रम से २० और ३० घड़ी में वह कुण्ड जल से पूर्ण होता था। और ग यह झरना कुण्ड का पानी उस में से निकलने के लिये था और इस से वह कुण्ड भर जल ६० घड़ी में सब निकल जाताया।
२६ । अपर के प्रक्रम में उस २ प्रकार के प्रश्न का उत्तर जानने के लिये अलम २ बोनसत्र उत्पन्न करने का प्रकार दिखलाया। परंतु जिस से एकवर्णएकघातसमीकरणसम्बन्धि प्रश्नमात्र का उत्तर ज्ञात हो ऐसा भी बीजसूज उत्पत्र हो सकता है। उस में लाघव के लिये जिने प्रश्नों में अव्यक्त राशि किसी व्यक्त संख्या से गुणा वा भागा हुआ हो वा अपने हि किसी अंश से जोड़ा हुआ वा घटाया हुआ हो ऐसे प्रश्नों के उत्तर के लिये एक छोटा बीजमत्र होता है। और (एकवर्णएकघातसंबन्धि) सकल प्रश्नों के उत्तर के लिये एक बड़ा बीजसूत्र है । उस में पहिले बीजसूत्र से जो विधि उत्पत्र होता है उस को इष्टकर्म कहते हैं और दूसरे से जो विधि बनता है उस को द्वीष्टकर्म कहते हैं । इन बीजसूत्रों के विधिओं से एकवर्णएकघातसंबन्धि समग्र प्रश्नों के उत्तर अव्यक्त अक्षर की कल्पना के विना केवले व्यक्त की रीति से ज्ञात हो सकते हैं । इस लिये अनन्तर के दो प्रक्रमों में क्रम से वे दो बीतसूत्र और उन के विधि लिखते हैं।
For Private and Personal Use Only
Page #295
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
बष्टकर्म और द्वीष्टकर्म । , १७ । एकवर्णएकघातसमीकरणसंवन्धि प्रश्नों में जिन में प्रव्यात राशि किसी व्यक्त संख्या से गुणित वा भक्त वा अपने किसी अंश से सहित वा रहित हो उन में स्पष्ट है कि उन प्रश्नों से अय = क, ऐसा एक समीकरण उत्पन्न होगा। इन में क यह व्यक्त संख्या प्रश्न में ज्ञात रहती है इस को दृष्ट कहते हैं। अब ऐसे प्रश्न में जो अव्यक्त राशि का मान कोड इष्ट अर्थात् चाहो सो मानो, जैसा द, तो स्पष्ट है कि अद यह क के समान न होगा किंतु और कोई होगा सो मानो किन होगा इस को निष्यत्र कहते हैं। तो अइ = न, यह दसरा समीक-- रण है । इस से अ = । इस अ की उमिति को अय = क, इस समाकरण में अके स्थान में रखने से x य = क.. य = क । इस प्रकार से ऐसे प्रश्नों के उत्तर के लिये य = क यह बीजसत्र है। इस से यह नीचे लिखा हुआ विधि उत्पन्न होता है। इस विधि को इष्टकर्म कहते हैं।
इष्टकर्म । जिस ऐसे प्रश्न का उत्तर.जानना हो उस में पहिले अध्यक्त संख्या के स्थान में जो चाहो सो संख्या मान लेओ उस को इष्ट कहते हैं उस में प्रश्न की बोली के अनुसार सब गणित करो तब अन्त में जो निष्यन्त्र होगा उस का इष्ट और दृष्ट दून के गुणनफल में भाग देओ नो लब्धि आवेगी वही अव्यक्तराशि का मान होगा। उस से प्रश्न का उत्तर स्पष्ट होगा।
उदा० । जिस संख्या को दो से गुण के फल में उसी संख्या का प्राधा और तिहाई घटा देओ तो ४६ शेष रहता है यह संख्या क्या है?
मानो कि वह संख्या ६ है, तब
६४२-६४३-६४१ - = १२-३-२= यह निष्पत्र है। और प्रश्न में ४६ दृष्ट है। पस लिये ४२, यही अभीष्ट संख्या है। यह उत्तर।
For Private and Personal Use Only
Page #296
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
इष्टकर्म और द्वीष्टकर्म ।
सर १८। जब कि एकवर्णएकघातसमीकरणसम्बन्धि प्रश्न मात्र में अय + क और गय + घ ऐसे दो समान पत उत्पच होते हैं यह स्पष्ट है।
रस लिये इन दो पत्तों का अन्तर अवश्य • होगा . अर्थात अय+क- (गय+घ) = .
(अ-ग) य+ (क-घ) . . अब ऐसे प्रश्न में नो अव्यक्तराशि का मान इष्ट अर्थात् चाहो सो मानो जैसा इ तो स्पष्ट है कि इस से प्रश्न की बोली के अनुसार जो प्रद + क और गइ + घ, ये दो पत उत्पन्न होंगे ये परस्पर समान न होंगे इस लिये इन का अन्तर • नहीं होगा। तो मानो कि इन दो पता का अन्तर न है।
अर्थात् अइ + क- (गइ + घ) = न
.:. (अ-ग) + (क-घ) =न और ऊपर का समीकरण, (अ-ग) य+ (क-घ) = • अन्तर करने से, (अ-ग) (इ-य) = न .. इसी प्रकार से जो अव्यक्तराशि का मान कोर दूसरा इष्ट जैसा उ मानो और इस दुष्ट से जो दो पक्ष होंगे उन का अन्तर म मानो तो
ऊपर की युक्ति से (अ-ग) (उ-य) = म, यह समीकरण उत्पत्र
होगा।
:: भागहार से अ-गा(हु-या = में । अर्थात हु-य- न वा,
मह-मय = नउ-नय .. (न-म) य = नउ-मद .
और य = नर-मई ---- इस प्रकार से एकवर्णएकघातसमीकरणसम्बन्धि प्रश्नों के उत्तर के लिये य= नउ-मह यह बीजसूत्र है । इस से उन प्रश्नों का उत्तर जानने के लिये नीचे लिखा हुआ सामान्य विधि उत्पत्र होता है। इस को द्वीष्टकर्म कहते हैं।
For Private and Personal Use Only
Page #297
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
itraa
..PERamNINVESTM
टमर्म और द्वीष्टकर्म। द्वीष्टकर्म । प्रश्न में और मध्य राशि होगा उस के स्थान में का इष्ट संख्या मान के उस में प्रश्न की बोली के अनुसार सब गणित कर के समान दो पक्षों की संख्या सिद्ध करो जोवे दो संख्या परस्पर समान हो तो नो इष्ट माना है वही अव्यक्ता राशि का मान होगा। परंतु जो वे संख्या परस्पर समान म हों तो उन का अन्तर करो और पहिले पक्ष की संख्या से दूसरे पक्ष की संख्या जैसी छोटी वा बड़ी होगी उस के अनुसार वह अन्तर धन का सच जान्ने । इसी प्रकार से अव्यका राशि के स्थान में दूसरी एक इष्ट संख्या मान के दूमरा अन्तर धन घा ऋण सिद्ध करो। फिर पहिले अन्तर को दूसरी दृष्ट संख्या से गुख देनो और दूसरे अन्तर को पहिली इष्ट संख्या से गुण देओ। तब जो वे अन्तर दोनों धन वा दोनों राण हों तो इन दो गुणनफलों के अन्तर में उन दो अन्तरों के अन्तर का भाग देओ । परंतु जो एक अन्तर धन हो और एक ऋण हो तो गुणनफलों के योग में अन्तरों के योग का भाग देओ । यों करने से जो लब्धि पावेगी वही अध्यक्तराचि का मान होगा । उस से प्रश्न का उत्सर स्पष्ट होगा।
उदा०। जिस संख्या को दो से गुण के फल में १७ घटा देओ तो शेष, उस संख्या के आधे से १ अधिक रहता है वह संख्या क्या है?
मानो कि वह संख्या १४ है, तो १४४२-१७ = ११, परंतु १४४१ +१=८, :: ११-८३ यह पहिला अन्तर धन है। फिर मानो कि वह संख्या १८ है, तो १८ ४२-१७ = १६ और १८४३ + १ = १०, .. १६-१० = यह दूसरा भी अन्तर धन है। अब ३४१८ = ५४ और ६४१४ = १२६ इस लिये १२६-१४ = = १२ यही अभीष्ट संख्या है । यह उत्तर
' बीजगणित का पूर्वार्ध समाप्त हुआ ॥ .
For Private and Personal Use Only
Page #298
--------------------------------------------------------------------------
________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
For Private and Personal Use Only
Acharya Shri Kailassagarsuri Gyanmandir
Page #299
--------------------------------------------------------------------------
________________ Shri Mahavir Jain Aradhana Kendra www.kobatirth.org Acharya Shri Kailassagarsuri Gyanmandir For Private and Personal Use Only