Book Title: Ganitasara Sangraha of Mahavira
Author(s): Rangacharya
Publisher: Rangacharya

Previous | Next

Page 223
________________ CHAPTER II-ARITHMETICAL OPERATIONS. 21 The rule for finding out the vididhana, the uttaradhana and tbe sarvadhana : 63. The ididhawa is the first term multiplient by the number of terms (in the series. The uttarakhand is the product of) the number of terms multiplied by the common difference (and again) multiplied by the half of the number of terme less box one. The sum of these two gives) the surrulhand, ie, the sum of all the terms in the scries; and this sum will be the name as that of a series wbich is characterised by a negative common difference, when the order of the terms in the series in reversed so that the last term is made to be the first term, The rule for finding the antyethana, the wurdhyadhana and the sarradhana :-- 61. The number of terms in the arriva lossche boy www and multiplied by the cominion difference and then combined with the first torm (given the antycellunt. - llall of the sum of 03-64. In the rule of the terms in all withoutically g i ve WHICH I S wbtained cling to the litora tre multiple of tho comun lift wonen, the nuts of thin iple bring the teamured by the Rition which thy Kefim term bol in the Nor d ing to this concepti. wolve to find in to the main the first teemalong with u multiple of the common difference. The wurms of all uchun IN NO found in what in her called the adidhane; the sum of H much multiples of the common difference Corintitute the tawhanu; and the marvaillant which is obtained liv uilding these two mums is of course the sum of the whole mriew. The expronion tyadhana (lenotch the value of the last t ill en arithmetically pro v o Borice. And marthyadha wa means the value of the middle form which value bowever, coitoond to the arithmetical ban of the first and the lat terminin the series, that when there are 2n + 1 teria in the pink, the volor of the (* + 1)th town in the wadhyadhana, but win there are 2.1 termin in the merica the arithmeticul menn of value of the l and of that of the (n + 1) torm becomes tho madhyadhana. Accordingly weber (1) Adidhani xa. (2) Uttarad . l 6) Aniyda (n-1) + (4) Jodhyadhan su cuilhan (1) + (%) (*)

Loading...

Page Navigation
1 ... 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531