Book Title: Ganitasara Sangraha of Mahavira
Author(s): Rangacharya
Publisher: Rangacharya

Previous | Next

Page 252
________________ GANITASĀRASANG RAHA. Example in illustration of vyatkalita in relation to a series in geometrical progression. 53. The first term is 74, the common ratio is y, and the number of terms is 8; and the chosen-off number of terms is 3, 4 or 5. What are the first term, the sum and the number of tering in relation to the (rospective) remainder-series ? Thus ends the vyutkalita of fractions, The six varieties of fractions. Lorcaftor we shall expom the six varieties of fractions. 54. Bhäga (or simple fractions), Prabhāga (or fractions of fractions), then Bhagabhága (or complex fractions), then Bhāgānubandha (or fractions in association), Bhagāpavāha (or fractions iu dissociation), together with Bhāyamātr (or fractions consisting of two or more of the above-mentioned fractions)--these are here said to be the six varieties of fractions. Simple fractions : (addition and subtraction). The rule of operation in connection with sinple fractions therein : 55. If, in the operations relating to simple fractions, the numerator and the denominator (of each of two given simple fractions) are multiplied in alteration by the quotients obtained 55. 'l he ineth of reducing fractions to common denominntors described in this rule applics only to pains of fractions. The rule will be clear from the following worked out example: To simplify " + " Here, a and Jy are to be multiplied by a which is tho quotiont obtained by dividing yz, the denoninator of the other fraction, by y which is the common faotor of the douaminntors. Thus we got . TUZ Similarly in the second fraction, by multiplying band ya by : which is the qaotient obtained by dividing the first denominator zy by y the common factor, weget b Now + bx a3 + bx 2 yo w y sys sya

Loading...

Page Navigation
1 ... 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531