Book Title: Ganitasara Sangraha of Mahavira
Author(s): Rangacharya
Publisher: Rangacharya

Previous | Next

Page 257
________________ CHAPTER III--PRACTIONS 66 three, the first and the last donowinators we obtained Wing (however multipliert (again, by 2 and respectively. Examples in illustration thereof. 76. The sum of five or six or seven (ilifferent fractioual) quantities, having l fot (ouch of) their umemtors, is 1 (in each case).. () you, who know arithmetic, say what the required) donominators are. The rule for finding out the denominators in the case of an mnoven number of fractione) : 77. When the sum of the different fruitional, quantities, having one for oach of their nuncrators, is one, the required) denominatong are such as, beginning with two, go on a successively rising in value by one, each (such denominator) being further) multipliol by that AK! From thin it is clear that, wlun the firme fraction ou the last fraction are added to this lust rosult, the um boumon 1. In this connection it may be noted that, in a series in geometrical progression consisting of n terms, having us the first toru and the common ratlo, the vum in, for all positive integral values of a, loan thun (n + 1)th term in the series. Therefore, if we udel to the sum of the series in geometrical progressivu , x the (+ 11th torm, which in the lunt fraction necording to tbe rule stated in this stanza, weet, have to adi - in order to get I am tlir om. Things in oneineet in this rulo as the first fraction, and wo 3 in the valne chun for a, nince the numerator of all the fractions has to be l. 17. Bere noteszi mitrinovávett on var? = z{ckstatoest...+ aco', +]

Loading...

Page Navigation
1 ... 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531