Book Title: Ashtapad Maha Tirth 02
Author(s): Rajnikant Shah, Others
Publisher: USA Jain Center America NY

View full book text
Previous | Next

Page 216
________________ Shri Ashtapad Maha Tirth - II Edge enhancement Synthetic color assignment Filtering 7. Multichannel analysis Remote Sensing Instruments Aerial Photography Many features which are difficult or impossible to see standing on the ground become very clear when seen from the air. But, black and white photography only records about twenty-two perceptible shades of gray in the visible spectrum. Also, optical sources have certain liabilities, they must operate in daylight, during clear weather, on days with minimal atmospheric haze. Color Infrared Film (CIR) Detects longer wavelengths somewhat beyond the red end of the light spectrum. CIR film was initially employed during World War II to differentiate objects that had been artificially camouflaged. Infrared photography has the same problems that conventional photography has, you need light and clear skies. Even so, CIR is sensitive to very slight differences in vegetation. Because buried archaeological features can affect how plants grow above them, such features become visible in color infrared photography. Thermal Infrared Multispectral Scanner (TIMS) A six channel scanner that measures the thermal radiation given off by the ground, with accuracy to 0.1 degree centigrade. The pixel (picture element) is the square area being sensed, and the size of the pixel is directly proportional to sensor height. For example, pixels from Landsat satellites are about 100 feet (30 m) on a side, and thus have limited archaeological applications. However, pixels in TIMS data measure only a few feet on a side and as such can be used for archaeological research. TIMS data were used to detect ancient Anasazi roads in Chaco Canyon, NM. Airborne Oceanographic Lidar (ADI) A laser device that makes "profiles of the earth's surface. The laser beam pulses to the ground 400 times per second, striking the surface every three and a half inches, and bounces back to its source. In most cases, the beam bounces off the top of the vegetation cover and off the ground surface; the difference between the two give information on forest height, or even the height of grass in pastures. As the lidar passes over an eroded footpath that still affects the topography, the pathway's indentation is recorded by the laser beam. The lidar data can be processed to reveal tree height as well as elevation, slope, aspect, and slope length of ground features. Lidar can also be used to penetrate water to measure the morphology of coastal water, detect oil forms, fluorescent dye traces, water clarity, and organic pigments including chlorophyll. In this case, part of the pulse is reflected off the water surface, while the rest travels to the water bottom and is reflected. The time elapsed between the received impulses allows for a determination of water depth and subsurface topography. Archaeological Remote Sensing (160

Loading...

Page Navigation
1 ... 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532