Book Title: Text of Confucianism Part 01
Author(s): James Legge
Publisher: Oxford

View full book text
Previous | Next

Page 19
________________ xvi PREFACE. pieces, five of which are of the time of the Shang dynasty (called also the Yin), B.C. 1766-1123. The others belong to the dynasty of Kau, from the time of its founder, king Wăn, born B.C. 1231, to the reign of king Ting, B.C. 606586. The whole is divided into four Parts, the last of which is occupied with Odes of the Temple and the Altar.' Many pieces in the other Parts also partake of a religious character, but the greater number are simply descriptive of the manners, customs, and events of the times to which they belong, and have no claim to be included in the roll of Sacred Texts. In this volume will be found all the pieces that illustrate the religious views of their authors, and the religious practices of their times. The third work is the Yi, commonly called the Book of Changes. Confucius himself set a high value on it, as being fitted to correct and perfect the character of the learner (Analects, VII, xvi); and it is often spoken of by foreigners as the most ancient of all the Chinese classics. But it is not so. As it existed in the time of the sage, and as it exists now, no portion of the text is older than the time of king Wăn, mentioned above. There were and are, indeed, in it eight trigrams ascribed to Fd-hsî, who is generally considered as the founder of the Chinese nation, and whose place in chronology should, probably, be assigned in the thirty-fourth century B.C. The eight trigrams are again increased to sixty-four hexagrams. To form these figures, two lines, one of them whole (- ) and the other divided (--), are assumed as bases. Those lines are then placed, each over itself, and each over the other; and four binograms are formed. From these, by the same process with the base lines, are obtained eight figures, the famous trigrams. Three other repetitions of the same process give us successively sixteen, thirty-two, and sixty-four figures. The lines in the figures thus increase in an arithmetical progression, whose common difference is one, and the number of the figures increases in a geometrical progression, whose common ratio is two. But what ideas FQ-hsî attached to his primary lines,—the whole and the divided ; what significance he gave to his trigrams; what to the Digitized by Google

Loading...

Page Navigation
1 ... 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 ... 2829