Book Title: Paumchariu Part 1
Author(s): Swayambhudev, H C Bhayani
Publisher: ZZZ Unknown

View full book text
Previous | Next

Page 139
________________ 98 PAUMACARIU out a whole Sandhi different fancy metres are used to break the monotony of the narrative frame. Many Varnavrttas of the Sk. prosody especially those characterized by a recurrent structural unitare employed for this purpose. The language of all such passages in the Varņavsttas is more or less Prakritized. This practice of the Ap. epic poets is obviously based upon the similar practice found in Sk. Mahākävyas. Four such variation metres are found in PC. L-XX. (25). Ma da navatāra. Scheme. 5 + 5 + 5 + 5 (= 20). Occurrence. III 1, IX 12. Technically it is a Samacatuşpadi. Of course in the Kadavaka it appears in couplets. The last Gaņa always ends in a long. All the Gaņas show a pronounced amphimacer (-x-) tendency. This means that the forms x X X X X X and xxx are normally avoided. SC. VIII (3) treats this metre in a general way and illustrates it by citing PC. 24 2 1-2. For other metrical authorities see Bhayani, 1945, 58-59. The Madanāvatāra is several times used in MP. and appears to be a favourite of the post-tenth century Ap. poets. It is found in Devacandrasūri's Sulasakkhánu (2. Kadavaka), Jayadevamuni's Bhāvanāsandhi (2., 4., 6. Kadavaka), Nemināthadvatrimśika (almost throughout) etc. (26). Scheme. a. 4 tu-(or UUU (= 8). b. 4 + 4 + 4 + U — (or uu) u (= 16). Occurrence. XVII 8. Technically the metre is of the Antarasamă Catușpadi type. But a rhymed distich being the unit of the Kadavaka it appears in a two lined form with the rhyme scheme a/b that is usual in the Kadavaka. The first Gaņa of the 8-moraic Pāda avoids V-U. Hence the odd Pāda corresponds with the Pādas of the Dvipadi Candralekhā' (4 + U-(or Uu) u ) described by Hemacandra. The even Päda is that of the Paddhadiā. It can be easily seen that the odd Päda is identical in structure with the last eight moras of the Paddhadia-pāda. Looked at in this way the metre in question is just a combination of a truncated and a full Paddhadia-pāda. The metre of MP. 13 10 is just the reverse of ours. There a is equivalent to our b and vice versa. (27) Vilasini. Scheme. 3 + 3 + 4 + 3 + (= 16). Occurrence. XVII 12 (XLVI 2). All the lines satisfy the schemes of Vilāsini' and Bhúşana Galitaka (5 + 5 + 3 + 0-). So the structure cannot tell us which of the two is the metre employed in the present case. But in RC. 71 2 it is called Vilasini-chanda and Vilāsini belongs to that group (1) ca-la-da-lāh Candralekha/ Ch. VII 65. (2) tau cah tau Vilāsini/ Ch. IV 60. (3) pau tau Bhūşaņā/ Ch. IV 37. Jain Education International For Private & Personal Use Only www.jainelibrary.org

Loading...

Page Navigation
1 ... 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458