Book Title: Microcosmology Atom in Jain Philosophy and Modern Science
Author(s): Jethalal S Zaveri, Mahendramuni
Publisher: Jain Vishva Bharati
View full book text
________________
22
Microcosmology: Atom
Thus, the nucleus of an oxygen atom which is the eighth element in the atomic table and has 16 units of mass and 8 units of charge must be composed of 8 protons and 8 neutrons, whereas the heavy nucleus of uranium, atomic weight 238, atomic number 92, is formed by 92 protons and 146 neutrons. An important fact to keep constantly in mind about protons and neutrons is that the two are interchangeable. A proton, under certain conditions, loses its positive charge by emitting a positive electron (positron) and thus becomes a neutron. Similarly, a neutron, when agitated, emits a negative electron and becomes a proton. As we shall see, the latter process is taken advantage of in the transmutations of nonfissionable uranium into plutonium and of chromium into fissionable uranium 233. The transmutations of all other elements - age-old dream of alchemists - is made possible by the interchangeability of protons into neutrons and vice versa. Protons and neutrons are, thus, two electrical states of the same basic particle called nucleon.
The atoms of the elements have twins, triplets, etc., known as isotopes. The nuclei of these twins etc, all contain the same number of protons and hence all the same chemical properties. They differ, however, in the number of neutrons in their nuclei and hence have different atomic weights. For example, an ordinary hydrogen atom has nucleus of one proton. The isotope of hydrogen-deuterium has one proton plus one neutron in its nucleus. It is, thus, twice as heavy as ordinary hydrogen. We may now say that different combinations of two types of basic particles (called elementary particles), participating in the structure of the material universe, result in the infinite variety of the material world: First of all we have electrons with a negative electric charge and negligible mass. Then, we have nucleons which represent the basic material particles. They are either neutral, called neutrons, or positively charged, called protons.
But, as we shall see presently, many more particles have been discovered, and the number of particles increased from three to six by 1935, then to eighteen by 1955, and today we know over 200 "elementary particles".