Book Title: Microcosmology Atom in Jain Philosophy and Modern Science
Author(s): Jethalal S Zaveri, Mahendramuni
Publisher: Jain Vishva Bharati

View full book text
Previous | Next

Page 63
________________ Atom in Modern Science 45 Property of confinement always binds particles together into combinations that have no colour, e.g., one cannot have a single quark because it would have a single colour (red, green or blue). Instead a red quark has to be joined to a green and a blue quark by a string of gluons (red+green+blue-white). Such a triplet constitutes a proton or a neutron. Another possibility of combination is a pair.consisting of a quark and an anti-quark (red+anti-red and so on-white). Such combinations make up the particles known as mesons which are unstable. Similarly, confinement prevents one having a single gluon on its own, because gluons also have colour. Instead, one has to have a collection of gluons whose colours add up to white. Such a collection forms an unstable particle called a 'glueball'. Inspite of severe theoretical difficulties for accepting the existence of physical quarks, the fact cannot be denied that hadrons do often behave exactly as if they consisted of pointlike elementary constituents. Inspite of all these difficulties, many physicists still hang on to the idea of classical 'building blocks' of matter which is so deeply ingrained in western scientific tradition. UNIFICATION OF FORCES FOUND IN NATURE In 1967, theories for unifying the electromagnetic force and weak nuclear force were proposed by Abdus Salam and Steven Weinberg, just as Maxwell had unified electricity and magnetism about a hundred years earlier. They suggested that in addition to photon, there were three other 'spin l' particles, known collectively as "massive vector bosons" that carried weak force. Each had a mass of around 100 Gev.1 At energies much greater than 100 Gev the three new particles and the photon would all behave in a similar manner. Particle-accelerators were not powerful enough to reach the energies of 100 Gev. at that time. But over the next 10 years or so, the other predictions of the theories at lower energies agreed so well with experiment that in 1979, Salam and Weinberg were awarded Nobel Prize for Physics together with Sheldon Glashow who had suggested similar unified theories of the 1. Gev. stands for giga-electron-volt or 1000 million electron volt.

Loading...

Page Navigation
1 ... 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266