________________
Shri Mahavir Jain Aradhana Kendra
www.kobatirth.org
Acharya Shri Kailassagarsuri Gyanmandir
CHAPTER II-ARITHMETICAL OPERATIONS.
11
11. Six 3's, five 6's, and (one) 7, which is at the end, are put down in the descending order down to the units' place); and this (number) multiplied by 33 has (alsu) been declared to be a (kind of) necklace.
12. In this (problem), write down 3,4, 1, 7, 8, 2, 4, and 1 (in order from the units' place upwards), and multiply the resulting number) by 7; and then say that it is the neoklace of precious goms.
13. Write down (the number) 142857143, and multiply it by 7; and then say that it is the royal necklace.
14. Similarly 37037037 is multiplied by 3. Find out (the result) obtained by multiplying (this product) again to get such multiples (thereof) as have one as the first and nine as the last (of the multipliers in order).
15. The (figures) 7,0, 2, 2, 5 and 1 are put down (in order from the units' place upwards); and then this number) which is to be multiplied by 73, should also be called a necklace (wben so multiplied).
16. Write down (the number represented by) the group (of figures) consisting of 4, 4, 1, 2, 6 and 2 (in order from the units' place upwards); and when this is) multiplied by 64, you, who know arithmetic, tell me what the (resulting) number is:
17. In this (problemn) put down in order (from the units' place upwards) 1,1,0,1,1, (), 1 and 1, which (figures so placed) give the measure of a (particular) number; and (then) if this (nnmber) is multiplied by 91, there results that necklace which is worthy of a prince.
Thus ends multiplication, the first of the operations known as Parikarman.
11. The multiplicand here is 333333666667.
14. This problem rednces itself to, this: multiply 37037037 * 3 by 1, 2, 3, 4, 5, 6, 7, 8, and 9 in order.
For Private and Personal Use Only