Book Title: Triloksar
Author(s): Nemichandra Siddhant Chakravarti, Ratanchand Jain, Chetanprakash Patni
Publisher: Ladmal Jain

View full book text
Previous | Next

Page 17
________________ त्रिलोकसार के गपित की विशेषताएँ तीन लोक के सम्पूर्ण प्रमेयों को अपने गर्भ में धारण करने वाले इस त्रिलोकसार पंध में तीन लोक की रचना से सम्बन्धित गणित का विवेचन विशद रूप से किया गया है, जो अन्यत्र नहीं पाया जाता। सर्व प्रथम आचार्य ने 'माणं दुविहं लोगिंग छोगुत्तरीत्य'........ गापा १ के दाग कौकिक और बलोकिक के भेद से मान दो प्रकार का बताया है। इसमें मान, उन्मान, प्रवमान, गणिमान, प्रतिमान और तत्पतिमान के भेद से लौकिक मान ६ प्रकार का और द्रव्य, क्षेत्र, काल एवं भाव के भेव से अलौकिकमान ४ प्रकार का कहा है। सामान्यता दन्यमान से द्रव्य ( पदार्थ, क्षेत्रमान से प्रदेश ( सर्वाका तक ), कालमान से समय और भावमान से अविभागप्रतिच्छेदों का ग्रहण किया जाता है। जघन्य, मध्यम और उत्कृष्ट के क्षेत्र से प्रगान की कार : पम् प्रगान में एक परमाणु और उत्कृष्ट में सम्पूर्ण द्रव्य समूह का ग्रहण होता है। मध्यम द्रव्यमान दो प्रकार का है(१) संख्या प्रमाण मोर (२) उपमा प्रमाण (गा, ११.१२ ) संख्यात, असंख्यात और मनन्त के भेव से संख्या प्रमाण तीन प्रकार का है। इसमें संख्यात एक ही प्रकार का है, किन्तु परीतासंख्यात, युक्तासंख्यात और असंख्यातासंख्यात तथा परीतानन्त, युक्तानन्त और अतम्तानात के भेद से असंख्यात और अनन्त तीन-तीन प्रकार के होते हैं। इस प्रकार संख्या प्रमाण के कुल (१+३+३= ७ भेद होते हैं। ये सातों ही स्थान जघन्य, मध्यम भोर उत्कृष्ट की अपेक्षा तीन तीन प्रकार के होते हैं. प्रतः संख्या प्रमाण के कुल ( ७४३)२१ भेद हो जाते हैं (पा. १३, १४)। एक में एक का भाग देने से या गुणा करने से कुछ भी हानि वृद्धि नहीं होती अतः संख्या का प्रारम्भ दो के अंक से होता है और इसीलिये जघन्य संश्यात का प्रमाण को (२) है। ३, ४, ५ आदि में लेकर एक कम उत्कृष्ट संख्यात पर्वतके सम्पूर्ण भेदों को मध्यम संस्मात और एक कम जघन्यपरीतासंस्थात को उत्कृष्ट संख्यात कहते हैं। उत्कृष्ट संख्यात ( एक कम जघन्य परीतासंख्यात ) और अघन्यपरीठासंख्यात के प्रमाण का ज्ञान कराने के लिए अनवस्था, शलाका, प्रतिशलाका और महाशलाका इन चार कुण्डों की कल्पना की गई है। ये चारों कुण्ड गोल होते हैं। इनका व्यास एक लाख योजन और उरष एक हजार योजन प्रमाण है । प्रथम अनवस्था कुण्ड में गोल सरसों का प्रमाण प्राप्त करने के लिए उपास व परिधि का अनुपात स्थूल रूप से तिगुणा और सूक्ष्म रूप से दश का वर्गमूल बतलाया है। वर्तमान गणित में इस अनुरात को 'पाइ' कहते हैं जिसका संकेत चिह्न ( ) है। परिधि को चौथाई व्यास से गुणित करने पर वृत्ताकार क्षेत्र का क्षेत्रफल प्रान हो जाता है । अर्थात् ग्यास ( २ अर्धव्यास 1x1 का वर्गमूल (पाइ)x

Loading...

Page Navigation
1 ... 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 ... 829