Book Title: Journey Into The Animal Mind
Author(s): Ross Andersen
Publisher: Ross Andersen

Previous | Next

Page 19
________________ stayed put, as though they'd consulted a mental map and dismissed the possibility of flowers in the middle of a lake. Other scientists were not able to replicate this result, but different experiments suggest that bees are capable of consulting a mental map in this way. Andrew Barron, a neuroscientist from Macquarie University, in Australia, has spent the past decade identifying fine neural structures in honeybee brains. He thinks structures in the bee brain integrate spatial information in a way that is analogous to processes in the human midbrain. That may sound surprising, given that the honeybee brain contains only 1 million neurons to our brains' 85 billion, but artificial-intelligence research tells us that complex tasks can sometimes be executed by relatively simple neuronal circuits. Fruit flies have only 250,000 neurons, and they too display complex behaviors. In lab experiments, when faced with dim mating prospects, some seek out alcohol, the consciousness-altering substance that's available to them in nature in broken-open, fermenting fruit. [Read: Bees love getting high on caffeine ] Many invertebrate lineages never developed anything beyond a rudimentary nervous system, a network of neurons dispersed evenly through a wormlike form. But more than half a billion years ago, natural selection began to shape other squirming blobs into arthropods with distinct appendages and newly specialized sensory organs, which they used to achieve liberation from a drifting life of stimulus and response. The first animals to direct themselves through three-dimensional space would have encountered a new set of problems whose solution may have been the evolution of consciousness. Take the black wasp. As it hovered above the bougainvillea's tissuethin petals, a great deal of information-sunlight, sound vibrations, floral scentsrushed into its fibrous exoskull. But these information streams arrived in its brain at different times. To form an accurate and continuous account of the external world, the wasp needed to sync these signals. And it needed to correct any errors introduced by its own movements, a difficult trick given that some of its sensors are mounted on body parts that are themselves mobile, not least its swiveling head.

Loading...

Page Navigation
1 ... 17 18 19 20 21 22 23 24