Book Title: Contribution of Mahaviracharya in the
Author(s): R S Lal
Publisher: Z_Deshbhushanji_Maharaj_Abhinandan_Granth_012045.pdf

View full book text
Previous | Next

Page 13
________________ Symbolically we can write, if s. = 46,71_, Sapa = (a+a) (a+d+1), etc., Se Sa + Sad+Sated + ... + Sa + (n-11d = [{ (2r-19 dP + + + ad } xn--1) + a (a+10 ] x 2 In the following stanzal a rule has been given for finding of the sum of the series which can be written symbolically in the form 1+(1+2)+(1+2+3)+...+(1+2+3+...+n),ne,n and En. i.e. S = 2n +22 (+1) + ne + ni . सकपदार्धपदाहतिरवैनिहता पदोनिता व्याप्ता। सैकपदघ्ना चितिचितिचितिकृतिघनसंयुतिर्भवति ।। Algebraically, n (n+1)X7_.. -x (n+1) S = _ 2 3 which can be proved easily by substituting values En== n (n+1) , An+n) = } En + } En = n (n+1) (2n+1) + n (n+1).. 12 Lastly, in the following stanza a rule has been given for finding out a single formula for the sum of the four above mentioned series. गच्छस्त्रिरूपसहितो गच्छचतुर्भागताडित: सैकः । सपदपदकृतिविनिघ्नो भवति हि संघातसंकलितम् ॥ Symbolically, the above formula takes the form Unt +27° + ES. + En = [ (n+3) x 2 +1] (+n) 1. Gss 6 2. Gss 6 जन प्राच्य विद्याएं 170 171 3071 3098 ७५ Jain Education International For Private & Personal Use Only www.jainelibrary.org

Loading...

Page Navigation
1 ... 11 12 13 14