SearchBrowseAboutContactDonate
Page Preview
Page 88
Loading...
Download File
Download File
Page Text
________________ -२. १०.] परिकर्मव्यवहारः ___ गुणसंकलितोदाहरणम्दीनारपञ्चकादिद्विगुणं धनमर्जयन्नरः कश्चित् । प्राविक्षदष्टनगरीः कति जातास्तस्य दीनाराः ॥९९॥ सप्तमुखत्रिगुणचयत्रिवर्गगच्छस्य किं धनं वणिजः । त्रिकपश्चकपञ्चदशप्रभवगुणोत्तरपदस्यापि॥१०॥ गुणसंकलितोत्तराद्यानयनसूत्रम्असकृद्वयेकं मुखहृतवित्तं येनोद्धृतं भवेत्स चयः। व्येकगुणगुणितगणितं निरेकपदमात्रगुणवधाप्तं प्रभवः ।।१०१।। उदाहरणार्थ प्रश्न एक मनुष्य नगर से नगर भ्रमण करते हुए गुणोत्तर श्रेढि में धन कमाता है जिसका प्रथमपद ५दीनार और साधारण निष्पत्ति २ है। इस तरह उसने आठ नगरों में प्रवेश किया। बतलाओ उसके पास कितने दीनार हैं ? ॥९९।। गणोत्तर श्रेढि के योग द्वारा धन का माप किया जाता है। एक मनुष्य के पास गुणोत्तर श्रेढि वाला कितना धन होगा जब कि श्रेढि का प्रथमपद ७ है, साधारण निष्पत्ति ३ है और पदों की संख्या ९ है। पुनः, जिसके प्रथमपद, साधारण निष्पत्ति और पदों की संख्या क्रमशः ३, ५, १५ हैं ऐसी गुणोत्तर श्रेढि वाला धन बतलाओ ॥१०॥ गुणोत्तर श्रेढि के दिये गये योग सम्बन्धी प्रथमपद और साधारण निष्पत्ति निकालने का नियम वह राशि जिसके द्वारा, श्रेढि के योग को प्रथम पद द्वारा विभाजित करने से प्राप्त हुई राशि को १ द्वारा हासित कर उत्पन्न हुई राशि में कथित भाजन सम्भव हो (जब कि समय समय पर सब उत्तरोत्तर भजनफलों में से एक घटाने के पश्चात् भाग देने की यह विधि की जाती हो) तो वह राशि साधारण निष्पत्ति है। वह योग, जो एक कम साधारण निष्पत्ति द्वारा गुणित होकर, और तब स्वतः में वारंवार गुणित साधारण निष्पत्ति के (स्वगुणित साधारण निष्पत्ति का ऐसा गुणनफल जिसमें साधारण निष्पत्ति उतने बार प्रकट होती है जितनी कि पदों की संख्या रहती है ) गुणनफल द्वारा विभाजित होकर और तब इस स्वतः में वारंवार गुणित साधारण निष्पत्ति के गुणनफल को एक द्वारा हासित करने से प्राप्त राशि द्वारा विभाजित होकर प्रथमपद उत्पन्न करता है ॥१०१॥ न बार भाग देने योग्य है और 'न' ही श्रेढि के पदों की संख्या है। इसी तरह र ४ र ४र४......न पदों तक, र" होता है; और गुणधन अर्थात् अर', इस र" द्वारा विभाजित होकर अ देता है जो कि श्रेदि का चाहा हुआ प्रथमपद है । (१०१) निम्नलिखित उदाहरण से नियम का प्रथमभाग स्पष्ट हो जावेगा--- श्रेढि का योग ४०९५ है, प्रथमपद ३ है, पदों की संख्या ६ है। यहाँ ४०९५ को ३ द्वारा भाजित करने पर हमें १३६५ प्राप्त होता है । अब, १३६५-१ = १३६४ है। तब अन्वीक्षा द्वारा ४ चुनकर, १३६४=३४१, ३४१-१ = ३४०, ३४० = ८५; ८५ – १ = ८४; ४ = २१, २१-१ = २०; १ है । इसलिये ४ यहाँ साधारण निष्पत्ति है। निम्नलिखित से इस विधिका आधारभूत सिद्धान्त स्पष्ट हो जावेगा अ (र"- १)... र"- १ ; और र" - १ - १ = र-र र-१ +अ = र-2 और र- र-१ जो कि स्पष्टतः र के जो कि स्पष्टतः र के द्वारा भाज्य है । दूसरा भाग बीजीय रूप से इस तरह है - ५. र- १ भ = अ ( र" - १), र-१ १
SR No.090174
Book TitleGanitsara Sangrah
Original Sutra AuthorMahaviracharya
AuthorA N Upadhye, Hiralal Jain, L C Jain
PublisherJain Sanskriti Samrakshak Sangh
Publication Year1963
Total Pages426
LanguageHindi
ClassificationBook_Devnagari, Mathematics, & Maths
File Size35 MB
Copyright © Jain Education International. All rights reserved. | Privacy Policy