________________
0आर0 एस0 पांडेय
भारतीय गणित का संक्षिप्त इतिहास
गणित को भारत में प्रारम्भ से ही बहुत महत्वपूर्ण विषय माना जाता रहा है। 'वेदांग ज्योतिष' (1000 ई0 पू0) में गणित की महत्ता पर प्रकाश डालते हुए लिखा गया है :
यथा शिखा मयूराणां, नागाणां मणयो यथा
तद्ववेदांग शास्त्राणां, गणितं मूर्ध्नि वर्तते। अर्थात् जिस प्रकार मयूरों की शिखाएं और सर्पो की मणियां शरीर में सबसे ऊपर मस्तक पर विराजमान हैं उसी प्रकार वेदों के सब अंगों तथा शास्त्रों में गणित शिरोमणि है।
भारतीय गणित के इतिहास का शुभारम्भ ऋगवेद से होता हैवैदिक काल (1000 ई0 पूर्व तक):
वेदों में संख्याओं और दार्शनिक प्रणाली का स्पष्ट उल्लेख मिलता है। ऋगवेद की एक ऋचा है :
द्वादश प्रधयश्य क्रमेकं त्रिणि नभ्यामिक उतच्चिकेत ___ तस्मिन्त्सामकं त्रिशता न शंकवोऽर्पित षष्ठिर्न चलचलास । इसमें द्वादश अर्थात् बारह, त्रिणि अर्थात् तीन, त्रिशति अर्थात् तीन सौ, षष्ठि अर्थात् साठ संख्याओं का प्रयोग दाशमिक प्रणाली के ज्ञान का स्पष्ट उदाहरण है। ___ इस काल में 'शून्य' (zero) और "दाशमिक स्थान मान" पद्धति का आविष्कार गणित के क्षेत्र में भारत की अभूतपूर्व देन है। यह निश्चित रूप से ज्ञात नहीं है कि शून्य का आविष्कार कब और किसने किया, किन्तु इसका प्रयोग वैदिक काल से होता रहा है। 'शून्य' और 'दाशमिक
स्थान मान' की पद्धति आजकल सम्पूर्ण विश्व में प्रचलित है।
महर्षि वेदव्यास द्वारा प्रणीत नारद विष्णु पुराण में त्रिस्कन्ध ज्योतिष के वर्णन प्रसंग में गणित विषय का प्रतिपादन किया गया है, जिसमें (10°), दश, शत, सहस्त्र, अयुत (दस हजार), लक्ष (लाख), कोटि (करोड़), अर्बुद (दस करोड़), अब्ज (अरब), खर्ब (दस अरब), महापद्य (दस खरब), शंकु (नील), जलधि (दशनील), अन्त्य (पद्य), मध्य (दस पद्य), परार्ध (शंख जो 10" के मान के बराबार है) इत्यादि संख्याओं के बारे में बताया गया है कि ये संख्याएं उत्तरोत्तर दस गुनी हैं। इतना ही नहीं, इसमें गणित की अनेक संक्रियाओं- योग, व्यवकलन, गुणा एवं भाग, भिन्न, वर्ग, वर्गमूल, घन, घनमूल, त्रैराशिक व्यवहार आदि का विशद वर्णन है।
अंकों को लिखने की दाशमिक स्थान मान पद्धति भारत से अरब गयी और अरब से पश्चिमी देशों में पहुंची। अरब के लोग 1 से 9 तक के अंकों को 'इल्म हिन्दसा' कहते हैं और पश्चिमी देशों में (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) को Hindu Arabic numerals कहा जाता है। उत्तर वैदिक काल (1000 ई0 पू0 से 500 ई0 पू0 तक): 1: शुल्व एवं वेदांग ज्योतिष काल :
विभिन्न प्रकार की वेदियों और उन पर उपखंडों को सही-सही नापकर बनाने के प्रश्न को लेकर इस काल में रेखा गणित के सूत्रों का विकास एवं विस्तार किया गया जो 'शुल्व सूत्रों के रूप में उपलब्ध हैं। शुल्व उस रज्जु (रस्सी) को कहते हैं जो यज्ञ की वेदी बनाने के लिए माप के काम आती थी।
दूरी मापने या पृथ्वी पर वृत्त खींचने में शुल्व का प्रयोग होता था। शुल्व का अर्थ है रज्जु या रस्सी। अत: वह गणित जो शुल्व की सहायता लेकर विकसित किया गया, उसे शुल्व विज्ञान या शुल्व गणित का नाम दिया गया। शुल्व का पर्यायवाची रजु होने के कारण इसे रजु गणित भी कहा गया जो आगे चलकर रेखागणित में परिणत हो गया। विभिन्न प्रकार की यज्ञ वेदियों के निर्माण में रज्जु की सहायता से पृथ्वी पर अभीष्ट दूरियां मापने के अतिरिक्त कृषि योग्य भूमि की माप भी की जाती थी, इसीलिए इसकी सहायता से विकसित गणित का नाम क्षेत्रमिति, ज्यामिति तथा भूमिति भी पड़ गया। क्षेत्र, ज्या, भू का एक ही अर्थ है भूमि तथा मिति का अर्थ है मापन। ___ ज्यामिति को ग्रीक भाषा में ज्योमीट्री कहा जाता है। अंग्रेजी भाषा में भी Geometry यथावत् प्रयुक्त होता है। कुछ लोगों का विचार है कि "ज्योमीट्री" ज्यामिति का अप्रभंश है।
ज्यामिति का महत्व बताते हुए एक प्राचीन जैन ग्रन्थ में कहा गया है- "ज्यामिति गणित का कमल है और शेष सब तुच्छ है।"
शुल्व काल की प्रमुख उपलब्धियों में से एक है समकोण त्रिभुज का प्रमेय अर्थात् “कर्ण पर बना वर्ग शेष दो भुजाओं पर बने वर्गों के योग के बराबर होता है।" यह प्रमेय पाइथागोरस से कई शताब्दियों
हीरक जयन्ती स्मारिका
अध्यापक खण्ड/१
Jain Education International
For Private & Personal Use Only
www.jainelibrary.org