SearchBrowseAboutContactDonate
Page Preview
Page 941
Loading...
Download File
Download File
Page Text
________________ Symbolically we can write, if Sa = S Sa+Sa+sa+2+ = [{(2n) (2n-1) d2 6 i.e. S = En + (n+1)+ n2 + n3 . 2 Algebraically, In the following stanza a rule has been given for finding of the sum of the series which can be written symbolically in the form 1+(1+2)+(1+2+3)++(1+2+3+...+), n2, and En. S= a (a+1) 2 + Sa + (n-1) d d + 12/12 +ad} x(n-1)+ a (a+1)] x n (n+1) x 7 2 Jain Education International संकपदार्थपदातिरनिहता पदोनिता व्याप्या संपदा चितिचितिथितिकृतिधनसंयुतिर्भवति ॥ 3 1. GSS 2. GSS जैन प्राच्य विद्याएं which can be proved easily by substituting values n (n+1) 1 Σn == 2 2 6 6 -n X (n+1) (n2+n) // 202 + Symbolically, the above formula takes the form Sa+d 170 171 n (n+1) (2n+1) 12 + 1/2 En Lastly, in the following stanza a rule has been given for finding out a single formula for the sum of the four above mentioned series. (a+d) (a+d+1) 2. + En2+En+ ΣSn + En = [ (n+3) × 2 + 1 ] (n2+n) 307 309 refererefight againafen: dc: | पदपदकृतिविनिष्तो भवति हि संघात संकलितम् ॥ n(n+1) 4 etc... For Private & Personal Use Only ७५ www.jainelibrary.org
SR No.012045
Book TitleDeshbhushanji Aacharya Abhinandan Granth
Original Sutra AuthorN/A
AuthorR C Gupta
PublisherDeshbhushanji Maharaj Trust
Publication Year1987
Total Pages1766
LanguageHindi, English
ClassificationSmruti_Granth & Articles
File Size56 MB
Copyright © Jain Education International. All rights reserved. | Privacy Policy