SearchBrowseAboutContactDonate
Page Preview
Page 938
Loading...
Download File
Download File
Page Text
________________ In the following sutras the rules have been given to find out the sum of a series in geometrical progression, wherein the terms are either increased or decreased in a specified manner by a given known quantity). गणचितिरन्यादिहता विपदाधिकहीनसंगुणा भक्ता । व्येकगुणेनान्या फलरहिता होनेऽधिके तु फलयुक्ता।। Algebraically, if S = sum of the series, a = first term n=number of terms, r = common ratio and m = the quantity to be added or subtracted from each term of the series in G. P., and S' = the sum of the series in G. P., then S - sum of the resulting series - + S' r- 1 Proof : Theorem : Let S-a + (ar + m) + [(ar $ m)r m + ... to n terms and S'= a + ar + ar2 + ar3 + ... to n terms Now S =la + ar + arl + ar3 + ... to n terms] + m[(r+p2 + ... to n-1 terms)] + m[(r + pa + 3 + ... to n-2 terms)] + ... + m - 2 = 1 +m">=1+may + .. + m i -1-1) + (p-2-1) + (pm-3-1) + ... + (r--1)] + + mir(r+re+r+-+pm-1) – 1 (n-1)] -s+ , [ *} - (n-1)] + [ 1-n+1] + + 1. GSS 172 3 14 आचार्यरत्न श्री देशभूषण जी महाराज अभिनन्दन अन्य Jain Education International For Private & Personal Use Only www.jainelibrary.org
SR No.012045
Book TitleDeshbhushanji Aacharya Abhinandan Granth
Original Sutra AuthorN/A
AuthorR C Gupta
PublisherDeshbhushanji Maharaj Trust
Publication Year1987
Total Pages1766
LanguageHindi, English
ClassificationSmruti_Granth & Articles
File Size56 MB
Copyright © Jain Education International. All rights reserved. | Privacy Policy